ENGINEERING TOMORROW

Application guidelines

Maneurop® reciprocating compressors **MT / MTZ**

50 - 60 Hz - R22 - R417A - R407A/C/F - R134a - R404A / R507

	urop® reciprocating compressors	5
Comp	ressor model designation	6
	e numbers (for ordering)	
Con	npressor reference	
(ind	icated on the compressor nameplate)	6
Specif	ications	7
Tecl	nnical specifications	7
	provals and certificates	
Pres	sure equipment directive 97/23/EC	7
	voltage directive 2006/95/EC	
	rnal free volume	
	ninal performance data for R404A and R22	
	ninal performance data for R407C and R134a.	
Nor	ninal performance data for R407A and R407F.	10
Opera	ting envelopes	11
	tropic refrigerant mixtures	
Pha	se shift	13
Tem	perature glide	13
	v temperature and Mean temperature for	
R40	7A/C/F	13
Outlin	e drawings	14
	e drawings	
1 cy	linder	14
1 cy 2 cy		14 15
1 cy 2 cy 4 cy	linderlinders	14 15 16
1 cy 2 cy 4 cy Electr i	linderlinders.	14 15 16
1 cy 2 cy 4 cy Electr i Sing	linderlinders	14 15 16 17
1 cy 2 cy 4 cy Electr i Sing Nor	linderlinders	14 15 16 17 17
1 cy 2 cy 4 cy Electr Sing Nor Tric	linderlindersl	14 15 16 17 17
1 cy 2 cy 4 cy Electri Sing Nor Tric PSC	linderlindersli	14 15 16 17 17 17
1 cy 2 cy 4 cy Electri Sing Nor Tric PSC CSR	linder	14 15 16 17 17 17 17
1 cy 2 cy 4 cy Electri Sing Nor Tric PSC CSR Sug	linder	14 15 16 17 17 17 17 17
1 cy 2 cy 4 cy Electri Sing Nor Tric PSC CSR Sug Thre	linder	14 15 16 17 17 17 17 18 19
1 cy 2 cy 4 cy Electr Sing Nor Tric PSC CSR Sug Thre Win	linder	14 15 16 17 17 17 17 17 18 19
1 cy 2 cy 4 cy Electr' Sing Nor Tric PSC CSR Sug Thre Win Mot	linder	14 15 16 17 17 17 17 18 19 319
1 cy 2 cy 4 cy Electr Sing Nor Tric PSC CSR Sug Thre Win Mot	linder	14 15 16 17 17 17 17 18 19 19 21
1 cy 2 cy 4 cy Electr Sing Nor Tric CSR Sug Thre Win Mot Soft	linder	14 15 16 17 17 17 17 18 19 19 21 21

Refrigerants and lubricants	22
General information	
R22	22
Alternatives R22, HFC retrofit	22
R407C	23
R134a	23
R404A	23
R507	23
R407A	24
R407F	24
Hydrocarbons	24
System design recommendations	25
Piping design	
Operating limits	
Operating voltage and cycle rate	
Liquid refrigerant control and charge limit	
Sound and vibration management	29
Sound and vibration management	
Sound and vibration management Sound Vibration	29
SoundVibration	29 29
Sound	29 29
Sound	29 30 30
Sound	293030 ction to
Sound	29 30 30 ction to
Sound	29 30 30 ction to 30
Sound	
Sound	293030 ction to3031
Sound	293030 ction to3131
Sound	293030 ction to3131
Sound	29303031313131

Maneurop® reciprocating compressors

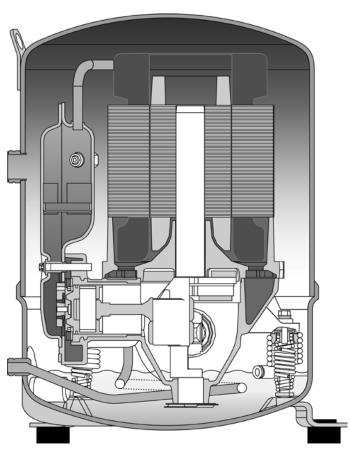
Maneurop® reciprocating compressors from Danfoss Commercial Compressors are specially designed for applications with a wide range of operating conditions. All components are of high quality and precision in order to assure a long product life.

Maneurop® MT and MTZ series compressors are hermetic reciprocating type designed for medium and high evaporating temperature applications.

The positive benefits of internal motor protection, high efficiency circular valve design and high torque motors provide for a quality installation.

MT & MTZ have the same mechanical and motor design.

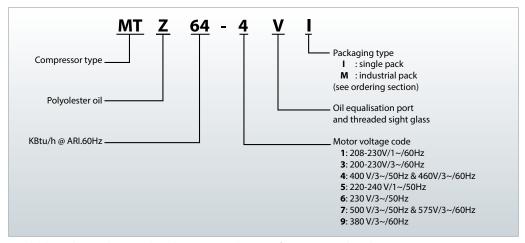
MT is charged with mineral oil while MTZ with polyester oil.

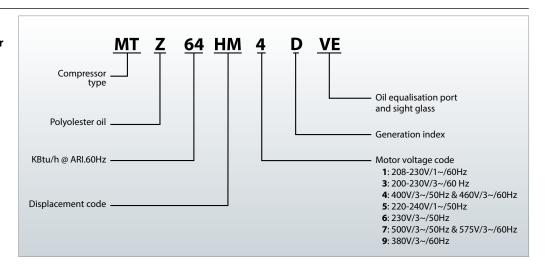

These compressor ranges can be used with a large choice of refrigerants according their compatibility with the oil.

MTZ compressors can be used in new installations and also to replace Maneurop® MTE compressors in existing installations.

MT and MTZ compressors have a large internal free volume that protects against the risk of liquid hammering when liquid refrigerant enters the compressor.

MT and MTZ compressors are fully suction-gas cooled. This means that no additional compressor cooling is required and allows the compressors to be insulated with acoustic jackets, to obtain lower sound levels, without the risk of compressor overheating.


MT and MTZ compressors are available in 16 different models with displacement ranging from 1.84 to 16.57 in³/rev. Seven different motor voltage ranges are available for single and three phase power supplies at 50 and 60 Hz. All compressors are available in VE version (oil equalisation + oil sight glass).


Compressor model designation

Code numbers (for ordering)

Available code numbers are listed section "Ordering information and packaging"

Compressor reference (indicated on the compressor nameplate)

Specifications

Technical specifications

Compressor	ı	Displacement			Oil charge	Net		Av	vailable n	notor vol	tage cod	des	
model	Code	in3/rev	cfh at 3600 rpm	Cyl. number	oz	weight Ibs	1	3	4	5	6	7	9
MT/MTZ018	JA	1.84	231	1	32	46	•	•	•	•	-	-	-
MT/MTZ022	JC	2.33	291	1	32	46	•	•	•	•	•	-	•
MT/MTZ028	JE	2.93	367	1	32	51	•	•	•	•	•	-	•
MT/MTZ032	JF	3.29	411	1	32	53	•	•	•	•	•	0	•
MT/MTZ036	JG	3.69	461	1	32	55	•	•	•	•	•	0	•
MT/MTZ040	JH	4.14	518	1	32	57	•	•	•	-	•	-	-
MT/MTZ044	HJ	4.65	581	2	61	77	•	•	•	-	•	•	•
MT/MTZ050	HK	5.23	653	2	61	77	•	•	•	-	•	•	•
MT/MTZ056	HL	5.87	733	2	61	82	•	•	•	-	•	•	•
MT/MTZ064	НМ	6.57	822	2	61	82	•	•	•	-	•	-	•
MT/MTZ072	HN	7.38	922	2	61	88	-	•	•	-	•	-	•
MT/MTZ080	HP	8.29	1036	2	61	88	-	•	•	-	•	-	•
MT/MTZ100	HS	10.45	1306	4	132	132	-	•	•	-	•	•	•
MT/MTZ125	HU	13.15	1643	4	132	141	-	•	•	-	•	•	•
MT/MTZ144	HV	14.76	1845	4	132	148	-	•	•	-	•	•	•
MT/MTZ160	HW	16.57	2071	4	132	148	-	•	•	-	•	•	•

[•] Available in MT and MTZ

Approvals and certificates

Maneurop® MT/MTZ compressors comply with the following approvals and certificates.

Certificates are listed on the product datasheets: http://www.danfoss.com/odsg

CE 0062 or CE 0038 (European Directive)

(Underwriters Laboratories)

All 60 Hz models

(China Compulsory Product Certification)

All models code 4 and 5 under CC scope

Gost certificate (for Russia)

Depending on the model and motor voltage code.

Pressure equipment directive 97/23/EC

Products	MT/ MTZ018 to 040	MT/ MTZ044 to 160
Refrigerating fluids	Group 2	Group 2
Category PED	l i	II .
Evaluation module	no scope	D1
Service temperature - Ts	122°F > Ts > -31°F	122°F > Ts > -31°F
MT - Service pressure - Ps	267 psig	267 psig
MTZ - Service pressure - Ps	328 psig	328 psig

Low voltage directive 2006/95/EC

Products	MT/ MTZ018 to 040	MT/ MTZ044 to 160
Manufacturer's declaration of incorporation ref. EC Machines Directives 98/392/CE	PED005	PED005

Internal free volume

Products	Volume (gallon)							
Flouucts	Low side	High side						
1 cyl.	2.049	0.074						
2 cyl.	4.525	0.166						
4 cyl .	8.506	0.317						

o Available in MTZ only

Application guidelines Specifications

Nominal performance data for R404A and R22

R404A	Refrigeration												
			2900 rating: F, SC = 0 F, S		To = 20°F	50 Hz, A Tc = 120°l	RI ratings F, SC = 0°F, S	5H = 20°F	60 Hz, ARI ratings To = 20°F, Tc = 120°F, SC = 0°F, SH = 20°F				
Compressor model	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	
MTZ018-4*	6500	1.21	2.73	5.40	7100	1.31	2.86	5.42	9000	1.76	2.86	5.10	
MTZ022-4*	9000	1.48	3.06	6.05	9700	1.62	3.24	5.97	12300	2.05	3.27	6.01	
MTZ028-4*	11700	1.96	4.04	5.98	12600	2.15	4.30	5.89	16000	2.68	4.23	5.96	
MTZ032-4*	13600	2.16	4.25	6.29	14600	2.37	4.56	6.15	17500	2.99	4.56	5.85	
MTZ036-4*	15900	2.58	4.95	6.19	17100	2.83	5.33	6.03	20200	3.34	5.10	6.05	
MTZ040-4*	18200	2.95	5.87	6.17	19400	3.25	6.30	5.98	23000	3.77	5.89	6.11	
MTZ044-4*	18300	2.78	5.35	6.60	19800	3.02	5.68	6.54	24300	3.85	5.85	6.31	
MTZ050-4*	21400	3.22	5.95	6.64	22900	3.50	6.33	6.54	28600	4.42	6.53	6.47	
MTZ056-4*	22900	3.51	6.83	6.52	24800	3.85	7.26	6.44	32500	4.98	7.53	6.51	
MTZ064-4*	27200	4.20	7.82	6.48	29400	4.60	8.35	6.38	36100	5.67	8.32	6.36	
MTZ072-4*	30400	4.69	8.95	6.50	32700	5.12	9.51	6.40	40900	6.53	9.74	6.26	
MTZ080-4*	35700	5.61	10.20	6.37	38200	6.14	10.95	6.23	46500	7.82	11.36	5.95	
MTZ100-4*	41900	6.76	12.21	6.20	45000	7.36	12.95	6.12	52900	8.72	12.79	6.07	
MTZ125-4*	53600	8.44	13.79	6.35	57500	9.22	14.87	6.23	68300	11.37	15.41	6.00	
MTZ144-4*	63100	9.78	16.29	6.46	67300	10.66	17.48	6.32	80500	13.00	17.94	6.19	
MTZ160-4*	69300	11.08	18.26	6.26	74100	12.10	19.65	6.12	87400	14.74	20.18	5.93	

^{* 50} Hz, EN12900 data for indicated models are Asercom certified

R404A data are also valid for refrigerant R507

R22		Refrig	eration		Air conditioning								
			2900 rating: F, SC = 0 F, S		To = +45°F		RI ratings F, SC = 15°F,	SH = 20°F	To = +45°F		RI ratings F, SC = 15°F,	SH = 20°F	
Compressor model	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	
MT018-4	5800	1.00	2.27	5.79	6500	1.10	2.37	5.90	7800	1.32	2.37	5.91	
MT022-4	8500	1.29	2.55	6.61	9500	1.43	2.71	6.66	11400	1.71	2.71	6.66	
MT028-4	12700	1.81	3.59	7.02	14000	1.98	3.80	7.08	16800	2.38	3.80	7.09	
MT032-4	13500	2.11	3.73	6.37	14900	2.31	3.99	6.46	17900	2.78	3.99	6.46	
MT036-4	16400	2.35	4.30	6.98	18000	2.58	4.61	6.97	21600	3.10	4.61	6.97	
MT040-4	17800	2.67	4.86	6.66	19700	2.96	5.22	6.66	23700	3.55	5.22	6.66	
MT044-4	16600	2.46	5.02	6.75	18500	2.69	5.31	6.87	23300	3.34	5.26	6.99	
MT050-4	20000	2.94	5.53	6.81	22300	3.23	5.91	6.88	27300	3.92	5.88	6.96	
MT056-4	22000	3.18	6.39	6.91	24600	3.50	6.79	7.02	30900	4.31	6.69	7.17	
MT064-4	26500	3.64	7.03	7.27	29300	4.02	7.50	7.29	35200	4.87	7.55	7.23	
MT072-4	29700	4.19	8.48	7.10	33200	4.64	9.04	7.16	40600	5.56	8.59	7.30	
MT080-4	35400	4.89	9.52	7.23	39200	5.40	10.19	7.25	46800	6.36	9.71	7.35	
MT100-4	38700	5.79	11.82	6.68	42700	6.31	12.43	6.76	51200	7.57	12.43	6.77	
MT125-4	52100	7.55	12.28	6.90	57300	8.27	13.41	6.93	68800	9.93	13.41	6.93	
MT144-4	59000	8.47	17.06	6.96	64700	9.27	18.26	6.98	77600	11.13	18.26	6.98	
MT160-4	65500	9.49	16.81	6.90	72000	10.39	17.97	6.93	86400	12.47	17.97	6.93	

To: Evaporating temperature at dew point (saturated suction temperature) Tc: Condensing temperature at dew point (saturated discharge temperature)

SC: Subcooling SH: Superheat

ARI capacity and power input data are +/- 5% Asercom: Association of European Refrigeration Compressor and Controls Manufacturers ARI: Air Conditioning and Refrigeration Institute

Application guidelines Specifications

Nominal performance data for R407C and R134a

R407C		Air conditioning												
			2900 rating: F, SC = 15°F,		To = +45°F		RI ratings F, SC = 15°F,	SH = 20°F	To = +45°F		RI ratings F, SC = 15°F,	SH = 20°F		
Compressor model	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh		
MTZ018-4*	5500	0.94	2.41	5.84	6200	1.03	2.49	6.05	8500	1.32	2.41	6.47		
MTZ022-4*	7800	1.24	2.76	6.26	8700	1.37	2.90	6.32	11200	1.69	2.81	6.59		
MTZ028-4*	9700	1.52	3.51	6.38	11000	1.70	3.72	6.47	14700	2.17	3.60	6.78		
MTZ032-4*	11700	1.75	3.66	6.69	13000	1.95	3.91	6.69	16400	2.40	3.85	6.83		
MTZ036-4*	13800	2.10	4.51	6.55	15200	2.35	4.84	6.48	17900	2.83	4.50	6.32		
MTZ040-4*	16100	2.48	5.22	6.50	17800	2.75	5.59	6.46	20700	3.14	5.12	6.59		
MTZ044-4*	15400	2.28	4.86	6.76	17100	2.51	5.13	6.82	22000	3.17	5.10	6.92		
MTZ050-4*	18100	2.70	5.24	6.70	20100	2.99	5.60	6.72	24900	3.67	5.59	6.77		
MTZ056-4*	19800	2.90	6.08	6.81	22100	3.22	6.45	6.87	28300	4.07	6.44	6.96		
MTZ064-4*	23400	3.35	6.73	6.98	26000	3.72	7.17	6.99	32000	4.59	7.16	6.98		
MTZ072-4*	26700	3.96	8.04	6.75	29800	4.37	8.55	6.81	36900	5.42	8.37	6.82		
MTZ080-4*	30800	4.64	9.18	6.65	34400	5.13	9.80	6.71	40400	6.08	9.33	6.66		
MTZ100-4*	34500	5.47	10.81	6.30	38600	6.03	11.42	6.41	49600	7.49	11.50	6.62		
MTZ125-4*	48400	6.97	11.79	6.95	53500	7.71	12.77	6.94	66400	9.66	13.73	6.87		
MTZ144-4*	53300	7.92	13.99	6.73	59100	8.73	15.01	6.77	75900	10.91	15.54	6.96		
MTZ160-4*	63100	9.20	15.79	6.86	69500	10.13	16.99	6.86	84100	12.38	17.40	6.79		

^{* 50} Hz, EN12900 data for indicated models are Asercom certified

R134a	Air conditioning												
	5 To = 41 °F,	50 Hz, EN12 Tc = 122 °F	900 ratings , SC = 0 °F, S	5 SH = 18 °F	To = +45°f		RI ratings F, SC = 15°F,	SH = 20°F	60 Hz, ARI ratings To = +45°F, Tc = 130°F, SC = 15°F, SH = 20°F				
Compressor model	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	
MTZ018-4	3600	0.69	1.92	5.19	4100	0.75	1.97	5.45	5200	0.89	1.77	5.80	
MTZ022-4	4700	0.82	2.16	5.75	5400	0.90	2.23	5.99	7100	1.13	2.16	6.27	
MTZ028-4	5900	1.02	2.83	5.77	6700	1.13	2.91	5.98	9500	1.46	2.79	6.48	
MTZ032-4	6900	1.25	3.33	5.53	7900	1.38	3.45	5.72	10400	1.75	3.27	5.91	
MTZ036-4	9400	1.45	3.32	6.46	10500	1.60	3.47	6.57	12300	1.98	3.39	6.23	
MTZ040-4	10800	1.61	3.81	6.71	12000	1.77	4.02	6.75	14300	2.19	3.67	6.51	
MTZ044-4	9900	1.49	4.05	6.66	11200	1.65	4.19	6.78	14300	2.09	3.95	6.81	
MTZ050-4	11400	1.80	4.32	6.34	12900	1.98	4.52	6.54	16100	2.48	4.50	6.49	
MTZ056-4	11500	1.88	5.31	6.12	13300	2.08	5.45	6.41	18000	2.83	5.45	6.38	
MTZ064-4	13700	2.17	5.71	6.32	15900	2.39	5.90	6.63	21000	3.11	5.66	6.73	
MTZ072-4	15900	2.50	6.67	6.35	18400	2.77	6.90	6.63	23900	3.53	6.58	6.77	
MTZ080-4	19500	2.93	7.22	6.64	22100	3.23	7.54	6.83	27400	4.03	7.10	6.81	
MTZ100-4	22300	3.65	8.67	6.13	25400	4.00	8.97	6.36	30500	4.81	8.47	6.34	
MTZ125-4	28100	4.17	8.35	6.73	31700	4.60	8.81	6.89	38300	5.53	8.60	6.93	
MTZ144-4	36500	5.40	11.02	6.75	40900	5.92	11.57	6.90	51000	7.47	11.60	6.83	
MTZ160-4	40300	5.84	11.37	6.90	45100	6.41	12.01	7.04	56700	8.10	12.29	7.01	

To: Evaporating temperature at dew point (saturated suction temperature) Tc: Condensing temperature at dew point (saturated discharge temperature)

SC: Subcooling SH: Superheat

ARI capacity and power input data are +/- 5% Asercom: Association of European Refrigeration Compressor and Controls Manufacturers ARI: Air Conditioning and Refrigeration Institute

Application guidelines Specifications

Nominal performance data for R407A and R407F

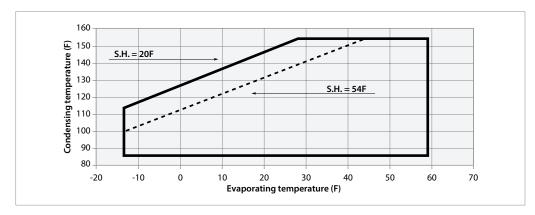
R407A		Refrigeration											
			2900 rating: F, SC = 0 F, S		To = 20°F	50 Hz, ARI ratings To = 20°F, Tc = 120°F, SC = 0°F, SH = 20°F				60 Hz, ARI ratings To = 20°F, Tc = 120°F, SC = 0°F, SH = 20°F			
Compressor model	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	
MTZ018-4	5900	1.02	2.46	5.81	6600	1.12	2.58	5.91	8000	1.35	2.69	5.91	
MTZ022-4	8200	1.26	2.75	6.49	9100	1.39	2.91	6.50	10900	1.67	3.04	6.50	
MTZ028-4	10700	1.67	3.63	6.41	11900	1.85	3.87	6.41	14200	2.22	4.04	6.41	
MTZ032-4	12400	1.84	3.82	6.74	13700	2.04	4.10	6.70	16400	2.45	4.28	6.70	
MTZ036-4	14500	2.19	4.45	6.64	16000	2.43	4.80	6.56	19200	2.92	5.00	6.56	
MTZ040-4	16700	2.51	5.28	6.63	18300	2.80	5.67	6.51	21900	3.37	5.92	6.51	
MTZ044-4	16700	2.36	4.81	7.08	18500	2.60	5.11	7.12	22200	3.12	5.33	7.12	
MTZ050-4	19500	2.73	5.35	7.13	21500	3.01	5.70	7.14	25800	3.61	5.94	7.14	
MTZ056-4	20900	2.98	6.14	7.00	23200	3.30	6.53	7.03	27800	3.96	6.81	7.03	
MTZ064-4	24800	3.57	7.04	6.95	27500	3.95	7.52	6.95	33000	4.75	7.84	6.95	
MTZ072-4	27800	3.98	8.05	6.98	30700	4.40	8.56	6.97	36800	5.28	8.92	6.97	
MTZ080-4	32600	4.76	9.17	6.84	35800	5.28	9.86	6.78	43000	6.34	10.28	6.78	
MTZ100-4	38200	5.74	10.98	6.66	42100	6.32	11.65	6.67	50600	7.59	12.16	6.67	
MTZ125-4	48900	7.17	12.40	6.82	53800	7.93	13.38	6.79	64600	9.52	13.96	6.79	
MTZ144-4	57600	8.32	14.65	6.92	63100	9.18	15.73	6.87	75700	11.03	16.41	6.87	
MTZ160-4	63200	9.42	16.42	6.71	69400	10.43	17.69	6.65	83300	12.52	18.45	6.65	

To: Evaporating temperature at dew point (saturated suction temperature) Tc: Condensing temperature at dew point (saturated discharge temperature)

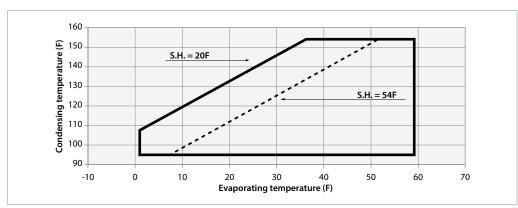
SC: Subcooling SH: Superheat

R407F						Refrig	eration					
			2900 rating: F, SC = 0 F, S		To = 20°F		RI ratings F, SC = 0°F, S	SH = 20°F	60 Hz, ARI ratings To = 20°F, Tc = 120°F, SC = 0°F, SH = 20°F			
Compressor model	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh	Cooling capacity BTU/h	Power input kW	Current input A	E.E.R. BTU/Wh
MTZ018-4	6300	1.08	2.53	5.82	7100	1.19	2.66	5.96	8500	1.43	2.78	5.96
MTZ022-4	8700	1.33	2.83	6.52	9700	1.48	3.01	6.57	11600	1.77	3.14	6.57
MTZ028-4	11300	1.76	3.74	6.45	12700	1.96	4.00	6.48	15200	2.35	4.17	6.48
MTZ032-4	13200	1.94	3.93	6.78	14600	2.16	4.24	6.77	17600	2.59	4.42	6.77
MTZ036-4	15400	2.32	4.58	6.67	17100	2.58	4.96	6.63	20500	3.10	5.17	6.63
MTZ040-4	17600	2.65	5.43	6.66	19500	2.96	5.86	6.58	23400	3.55	6.11	6.58
MTZ044-4	17700	2.49	4.95	7.12	19900	2.76	5.28	7.20	23800	3.31	5.51	7.20
MTZ050-4	20700	2.90	5.50	7.14	23000	3.21	5.88	7.18	27600	3.85	6.14	7.18
MTZ056-4	22200	3.16	6.31	7.03	24900	3.51	6.75	7.09	29800	4.21	7.04	7.09
MTZ064-4	26400	3.78	7.23	6.99	29500	4.20	7.76	7.03	35400	5.03	8.10	7.03
MTZ072-4	29500	4.21	8.27	7.00	32900	4.67	8.84	7.04	39400	5.60	9.22	7.04
MTZ080-4	34600	5.04	9.43	6.87	38400	5.60	10.18	6.86	46100	6.72	10.62	6.85
MTZ100-4	40600	6.07	11.28	6.69	45200	6.71	12.04	6.74	54300	8.05	12.56	6.74
MTZ125-4	51900	7.58	12.75	6.85	57700	8.41	13.83	6.86	69200	10.09	14.42	6.86
MTZ144-4	61100	8.78	15.06	6.96	67600	9.73	16.25	6.95	81100	11.67	16.95	6.95
MTZ160-4	67100	9.95	16.88	6.75	74300	11.04	18.27	6.73	89200	13.25	19.06	6.73

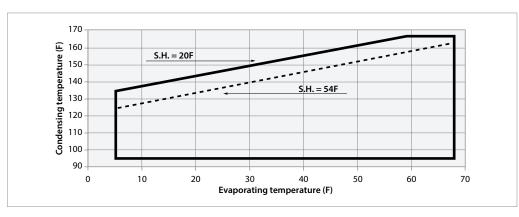
To: Evaporating temperature at dew point (saturated suction temperature) Tc: Condensing temperature at dew point (saturated discharge temperature)

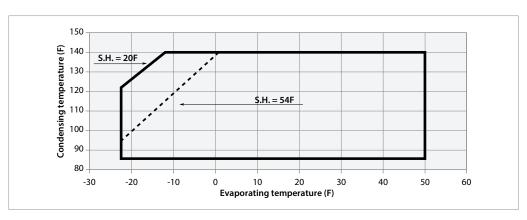

SC: Subcooling SH: Superheat

ARI capacity and power input data are +/- 5% Asercom: Association of European Refrigeration Compressor and Controls Manufacturers ARI: Air Conditioning and Refrigeration Institute

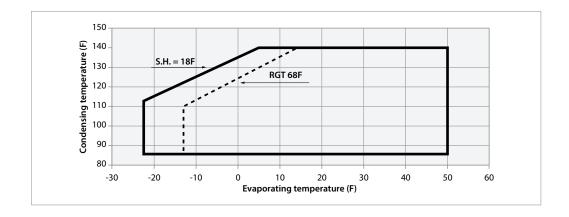


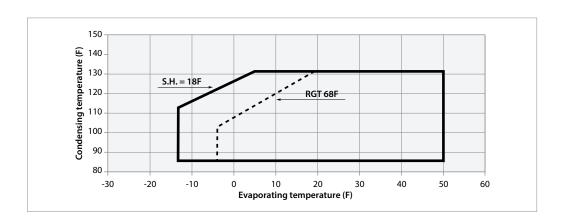
Operating envelopes


MT - R22 - R417A


MTZ - R407C at DEW point

MTZ - R134a


MTZ - R404A / R507



Operating envelopes

MTZ - R407A at Dew Point

MTZ – R407F at Dew Point

Operating envelopes

Zeotropic refrigerant mixtures

Refrigerant mixtures can be either zeotropic or azeotropic.

An azeotropic mixture (like R502 or R507) behaves like a pure refrigerant. During a phase transition (from vapor to liquid or from liquid to vapor) the composition of vapor and liquid stays the same.

In a zeotropic mixture (like R407C) on the other hand the composition of vapor and liquid changes during the phase transition. When the effect of this phase transition is very small, the mixture is often called a near-azeotropic mixture. R404A is such a near-azeotropic mixture.

The composition change causes phase shift and temperature glide.

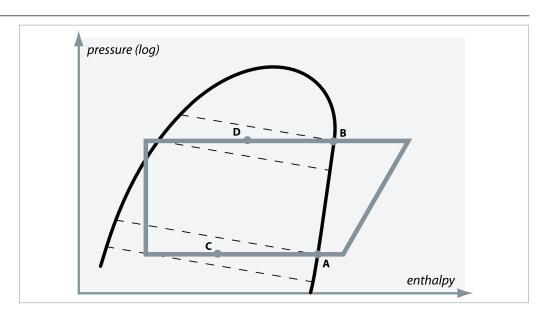
Phase shift

In system components where both vapor and liquid phase are present (evaporator, condenser, liquid receiver), the liquid phase and vapor phase do not have the same composition. In fact both phases form two different refrigerants. Therefore zeotropic refrigerants need some special

attention. Zeotropic refrigerants must always be charged in liquid phase. Flooded evaporators and suction accumulators should not be applied in systems with zeotropic refrigerants. This also applies to near-azeotropic mixtures.

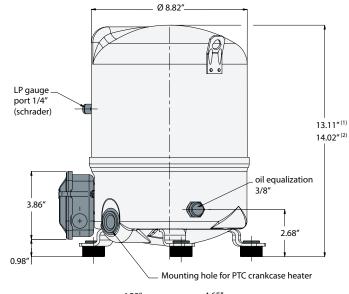
Temperature glide

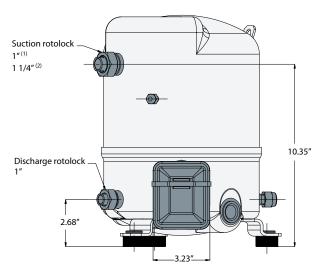
During the evaporating process and the condensing process at constant pressure, the refrigerant temperature will decrease in the condenser and rise in the evaporator. Therefore when speaking about evaporating and condensing temperatures, it is important to indicate whether this is a dew point temperature or a mean point value. In the figure below, the dotted lines are lines of constant temperature.

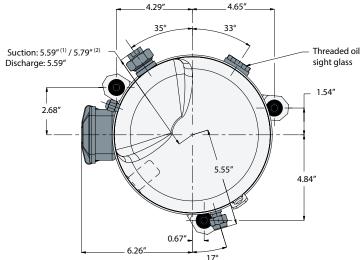

They do not correspond to the lines of constant pressure.

Points A and B are dew point values. These are temperatures on the saturated vapor line.

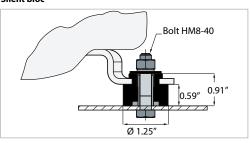
Points C and D are mean point values. These are temperatures which correspond more or less with the average temperature during the evaporating and condensing process. For the same cycle, mean point temperatures are typically about 3.6°F lower than dew point temperatures. According to Asercom recommendations, Danfoss Commercial Compressors uses dew point temperatures for selection tables and application envelopes etc.

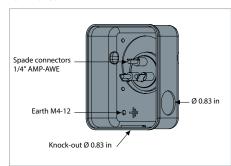

To obtain exact capacity data at mean point temperatures, the mean point temperatures must be converted to dew point temperatures with help of refrigerant data tables from the refrigerant manufacturer.


Dew temperature and Mean temperature for R407A/C/F



1 cylinder

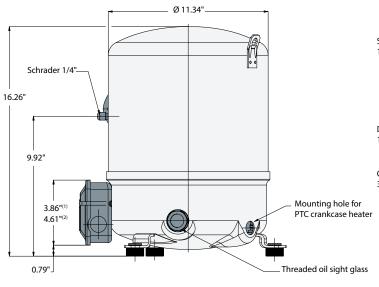


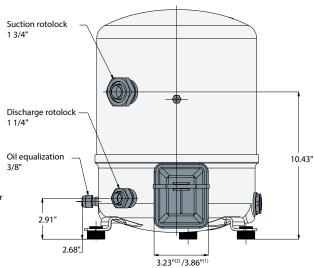


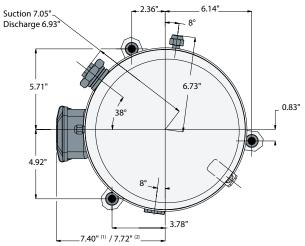
Model	Code										
Model	-1	3	4	5	6	7	9				
MT/MTZ018	(1)	(1)	(1)	(1)	(1)	-	-				
MT/MTZ022	(2)	(1)	(1)	(1)	(1)	-	(1)				
MT/MTZ028	(2)	(1)	(1)	(1)	(1)	-	-				
MT/MTZ032	(2)	(2)	(2)	(2)	(2)	(2)	(2)				
MT/MTZ036	(2)	(2)	(2)	(2)	(2)	(2)	(2)				
MT/MTZ040	(2)	(2)	(2)	(2)	(2)	(2)	(2)				

Silent bloc

Terminal box

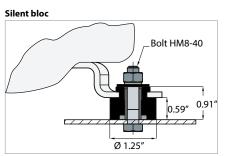


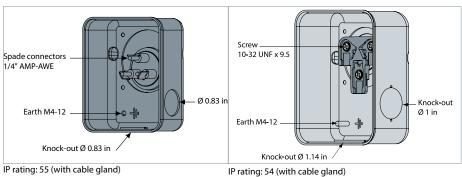

IP rating: 55 (with cable gland)


	Rotolock con	nections size	Pipe	sizing	Rotolock valve		
	Suction	Discharge	Suction	Discharge	Suction	Discharge	
MT/MTZ018-022 (3/4/5/6/9)-028 (3/4/5/6)	1"	1"	1/2"	3/8"	V06	V01	
MT/MTZ022/1-028/1-032 - 036 - 040	1 1/4"	1″	5/8″	1/2"	V09	V06	

Outline drawings

2 cylinders

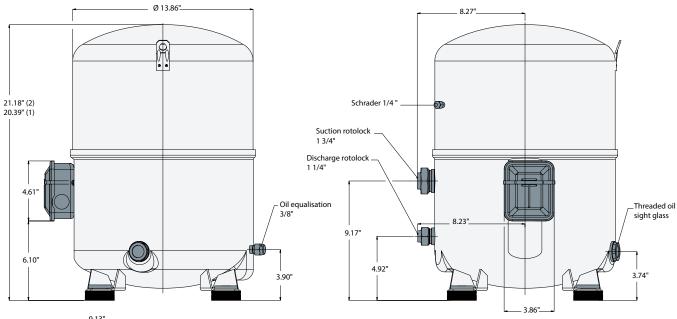


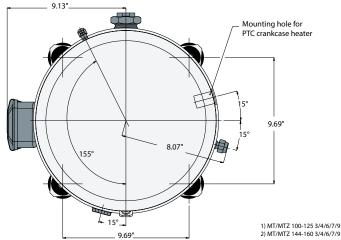


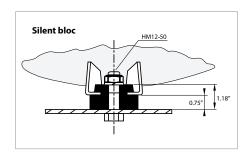
Model	Code										
Model		3	4	6	7	9					
MT/MTZ044	(1)	(1)	(1)	(2)	(1)	(1)					
MT/MTZ050	(2)	(1)	(1)	(2)	(1)	(1)					
MT/MTZ056	(2)	(1)	(1)	(2)	(1)	(1)					
MT/MTZ064	(2)	(1)	(1)	(2)	-	(1)					
MT/MTZ072	-	(1)	(1)	(2)	-	(1)					
MT/MTZ080	-	(2)	(1)	(2)	-	(1)					

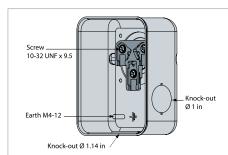
Terminal box for model (1)

Terminal box for model (2)






	Rotolock con	nections size	Pipe	sizing	Rotolock valve		
	Suction	Discharge Suction Discharge		Discharge	Suction	Discharge	
MT/MTZ044 - 050 - 056 - 064 - 072	1 3/4"	1 1/4"	7/8"	3/4"	V07	V04	
MT/MTZ080	1 3/4"	1 1/4"	1 1/8"	3/4"	V02	V04	


4 cylinders

Terminal box

IP rating: 54 (with cable gland)

	Rotolock connections size		Pipe s	sizing	Rotolock valve		
	Suction	Discharge	Suction	Discharge	Suction	Discharge	
MT/MTZ100 - 125 - 144 - 160	1 3/4"	1 1/4"	1 1/8"	3/4"	V02	V04	

Electrical connections and wiring

Single phase electrical characteristics

		LRA - Locked Rotor Current (A)		laximum Current (A)	Winding resistance (Ω) (\pm 7 % at 68° F)				
Motor Code	1	5	1	5		1	!	5	
Winding					run	start	run	start	
MT/MTZ018	51	40	13	10	1.32	4.16	1.32	3.75	
MT/MTZ022	49.3	41	17	15	1.18	2.26	1.32	3.75	
MT/MTZ028	81	51	25	20	0.67	1.80	1.05	3.19	
MT/MTZ032	84	70	26.5	20	0.62	2.84	0.78	4.14	
MT/MTZ036	84	60	30	22	0.62	2.84	0.78	4.14	
MT/MTZ040	99	-	34	-	0.53	1.83	-	-	
MT/MTZ044	97	-	31	-	0.45	1.90	-	-	
MT/MTZ050	114	-	36	-	0.37	1.79	-	-	
MT/MTZ056	136	-	42.5	-	0.32	1.61	-	-	
MT/MTZ064	143	-	46	-	0.32	2.10	-	-	

Nominal capacitor values and relays

		PSC,	CSR*	CSR o	nly
	Models	Run capa	acitors (1)	Start capacitors (2)	Start relay
		(A) μF	(C) μF	(B) μF	Start relay
	MT/MTZ018 JA-5	20	10	100	
	MT/MTZ022 JC-5	20	10	100	245521444
50 Hz	MT/MTZ028 JE-5	20	10	100	3ARR3J4A4 /RVA6AMKL
	MT/MTZ032 JF-5	25	10	135	/ ITV/ TO/ IVIICE
	MT/MTZ036 JG-5	25	10	135	
	MT/MTZ018 JA-1	15	10	100	
	MT/MTZ022 JC-1	30	15	100	
	MT/MTZ028 JE-1	25	25	135	
	MT/MTZ032 JF-1	25	20	100	
60 Hz	MT/MTZ036 JG-1	25	20	100	3ARR3J4A4
60 HZ	MT/MTZ040 JH-1	35	20	100	/RVA6AMKL
	MT/MTZ044 HJ-1	30	15	135	
	MT/MTZ050 HK-1	30	15	135	
	MT/MTZ056 HL-1	35	20	200	
	MT/MTZ064 HM-1	30	25	235	

PSC: Permanent Split Capacitor CSR: Capacitor Start Run

Trickle circuit

The trickle circuit provides the facility of heating the compressor crankcase by feeding a small current to the auxiliary winding and the run capacitor (See the drawings page 14.)

By using PSC or CSR starting systems, compressor models MT / MTZ 018 - 022 can be operated without crankcase heaters as the heater function is provided by the trickle circuit.

For the larger single phase compressor models MT / MTZ 028 - 064, the use of the PTC crankcase heater is recommended.

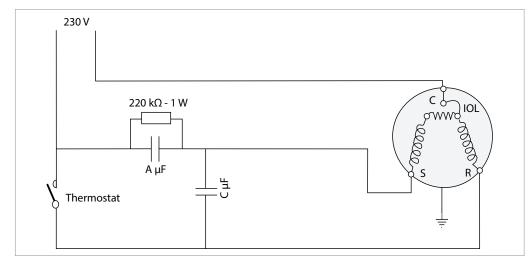
PSC wiring

PSC wiring may be used for refrigerant circuits with capillary tubes or expansion valves with bleed ports. Pressure equalization must be ensured before start-up because of the low starting torque characteristics of this system.

CSR wiring

CSR wiring provides additional motor torque at start-up, by the use of a start capacitor in combination with the run capacitor. This system can be used for refrigerant circuits with capillary tubes or expansion valves. The start capacitor is only connected during the starting operation, a potential relay is used to disconnect it after the start sequence.

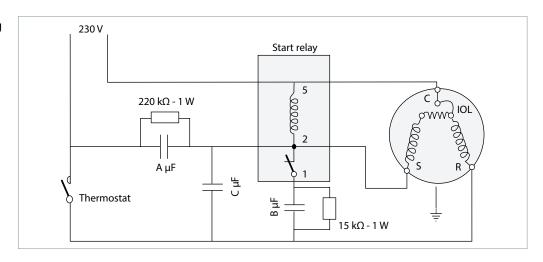
Some applications with high differential pressure can require a very high starting torque. For such cases the CSR starting kit can be converted to a very high starting torque kit by an additional start capacitor of 100 µF parallel to the start capacitor of the CSR kit. This configuration can also be used to reduce erratic starting at unfavorable conditions such as very low ambient temperature or weak voltage.


⁽¹⁾ Run capacitors: 440 volts(2) Start capacitors: 330 Volts

Electrical connections and wiring

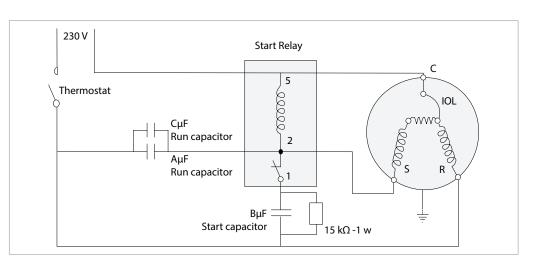
Suggested wiring diagrams

Single phase - PSC wiring with trickle circuit


IOL A & C C S R Motor protector Run capacitors Common Start winding (auxiliary) Run winding (main)

Single phase - CSR wiring with trickle circuit

IOL A & C B C S R Motor protector Run capacitors Start capacitor


Common Start winding (auxiliary) Run winding (main)

Single phase - CSR wiring without trickle circuit

IOL A+C B C S Motor protector Run capacitors Start capacitor

C Common
S Start winding (auxiliary)
R Run winding (main)
Capacitors A and C can be replaced by a single capacitor of size A + C

Electrical connections and wiring

Three phase electrical characteristics

Motor Code		LRA - Locked Rotor Current (A)			MCC - Maximum Continuous Current (A)					Winding resistance (Ω) (\pm 7 % at 68° F)					
	3	4	6	7	9	3	4	6	7	9	3	4	6	7	9
MT/MTZ018	38	20	-	-	-	9	5	-	-	-	2.29	9.18	3.34	-	-
MT/MTZ022	38	16	30	-	22.5	11	6	8.5	-	6	2.29	9.18	3.34	-	6.83
MT/MTZ028	57	23	41	-	32	16	7.5	11.5	-	8.5	1.38	6.17	1.18	-	4.62
MT/MTZ032	60	25	44	22	35	18	8	13	5.5	9	1.29	6.32	1.97	9.90	3.33
MT/MTZ036	74	30	74	26	35	17	9	17	7	9.5	1.08	5.43	1.08	7.76	3.33
MT/MTZ040	98	38	74	-	-	22	10	18	-	-	0.87	3.97	1.08	-	-
MT/MTZ044	115	48.5	77	44	78	22	9.5	16	8.5	13	0.74	3.22	1.13	5.83	1.68
MT/MTZ050	115	48.5	77	44	78	25	11.5	19	10	13.5	0.72	3.35	1.39	5.83	1.68
MT/MTZ056	130	64	105	50	72	24	12	23	11	15	0.55	2.39	0.76	3.86	1.64
MT/MTZ064	137	64	124	-	72	29	14	25	-	17.5	0.57	2.39	0.76	-	1.64
MT/MTZ072	135	80	143	-	100	30	17	27	-	18.5	0.55	1.90	0.56	-	1.32
MT/MTZ080	140	80	132	-	102	36	19	29	-	22.5	0.48	1.90	0.56	-	1.30
MT/MTZ100	157	90	126	62	110	43	22	35	17	26	0.50	1.85	0.67	3.10	1.26
MT/MTZ 125	210	105	170	75	150	54	27	43	22	30	0.38	1.57	0.43	2.51	0.84
MT/MTZ 144	259	130	208	90	165	64	36	51	25	40	0.27	1.19	0.37	2.00	0.72
MT/MTZ 160	259	130	208	99	165	70	36	51	29	46	0.27	1.19	0.37	1.76	1.10

^{*} Motor windings made of Aluminium wires.

Winding resistance

Winding resistance is the resistance between indicated terminal pins at 77°F (resistance value +/- 7%).

Winding resistance is generally low and it requires adapted tools for precise measurement. Use a digital ohm-meter, a '4 wires' method and measure under stabilised ambient temperature. Winding resistance varies strongly with winding temperature; If the compressor is stabilised at a different value than 77°F, the measured resistance must be corrected with following formula:

$$R_{tamb} = R_{77^{\circ}F} \qquad \frac{a + t_{amb}}{a + t_{77^{\circ}F}}$$

 $t_{77^{\circ}F}$: reference temperature = 77°F

t_{amb}: temperature during measurement (°F)

R_{77°F}: winding resistance at 77°F

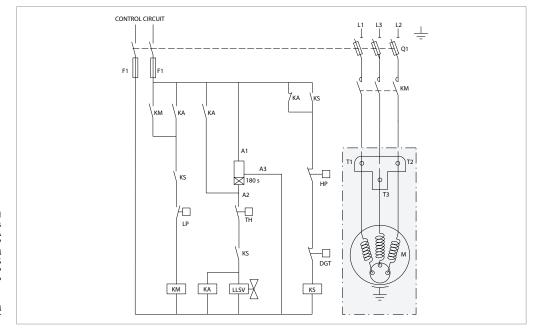
R_{amh}: winding resistance at t_{amb}

coefficient a= 234.5 copper wires motor

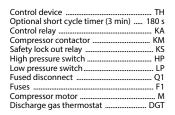
coefficient a= 232.6 aluminium wires motor

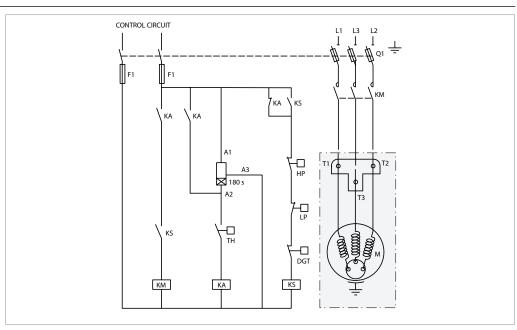
Motor protection and suggested wiring diagrams

The 3-phase compressors are protected by an internal motor protector, connected to the neutral point of the star connected stator windings, the protector cuts out all 3-phases simultaneously.


Note: once the overload protector has tripped it may take up to 3 hours to reset and restart the compressor.

For all 3-phase compressors, a PTC crankcase heater is required.


Electrical connections and wiring


Suggested wiring diagram with one shot pump-down cycle and safety lock-out relay

Control device	TH
Optional short cycle timer (3 min)	180 s
Control relay	KA
Liquid Solenoid valve	LLSV
Compressor contactor	KM
Safety lock out relay	KS
Pump-down control & LP switch	LP
H.P. switch	HP
Fused disconnect	Q1
Fuses	F1
Compressor motor	M
Discharge gas thermostat	

Wiring diagram without pumpdown cycle

Electrical connections and wiring

Soft starters

Starting current of Maneurop® 3-phase compressors can be reduced by using a soft starter. Two different versions are available:

CI-tronic[™] soft starters type MCI (recommended) and soft start kits with statoric resistors type SCR. The starting current can be reduced by up to 50% depending on the compressor model and the type of soft starter. Also mechanical stresses that occur at starting are reduced which increases the life of the internal components.

For details of the CI-tronic[™] MCI soft starters, please refer to literature DKACT.PD.C50.

For details of the SCR soft start kits, please contact Danfoss.

The number of starts should be limited to 6 per hour. HP/LP pressure equalization is required before starting.

Voltage application range

Motor Code	Nominal voltage	Voltage application range
1	208-230 V / 1 ph / 60 Hz	187 - 253 V
3	200-230 V / 3 ph / 60 Hz	180 - 253 V
4	380-400 V / 3 ph / 50 Hz 460 V / 3 ph / 60 Hz	340 - 440 V 414 - 506 V
5	220-240 V / 1 ph / 50 Hz	198 - 264 V
6	230 V / 3 ph / 50 Hz	207 - 253 V
7	500 V / 3 ph / 50 Hz 575 V / 3 ph / 60 Hz	450 - 550 V 517 - 632 V
9	380 V / 3 ph / 60 Hz	342 - 418 V

IP rating

The compressor terminal boxes IP rating according to CEI 529 are shown on the outline drawings section.

The IP ratings are only valid when correctly sized cable glands of the same IP rating are applied.

1st numeral, level of protection against contact and foreign objects

5 complete protection against contact and against harmful dust deposits

2nd numeral, level of protection against water

- 4 protection against water splashing from any direction
- 5 protection against jets of water from any direction

MT/MTZ 1&2 cyl.= IP55, MT/MTZ 4cyl.=IP54

Refrigerants and lubricants

General information

When choosing a refrigerant, different aspects must be taken into consideration:

- Legislation (now and in the future)
- Safety
- Application envelope in relation to expected running conditions
- · Compressor capacity and efficiency
- Compressor manufacturer recommendations
 & guidelines

Additional points could influence the final choice:

- Environmental considerations
- Standardization of refrigerants and lubricants
- Refrigerant cost
- Refrigerant availability

The table below gives an overview of the different refrigerant - lubricant - compressor combinations for Maneurop®, MT & MTZ compressors.

Refrigerant	Туре	Lubricant type	Compressor type	Danfoss Iubricant	Application
R22	HCFC	Mineral	MT	Mineral oil, 160P	Medium / High temperature
R417A	HFC	Polyolester	MT	Polyolester oil 160PZ	Medium / High temperature
R407A/C/F	HFC	Polyolester	MTZ	Polyolester oil 160PZ	Medium / High temperature
R134a	HFC	Polyolester	MTZ	Polyolester oil 160PZ	Medium / High temperature
R404A	HFC	Polyolester	MTZ	Polyolester oil 160PZ	Medium temperature
R507	HFC	Polyolester	MTZ	Polyolester oil 160PZ	Medium temperature
lternative R2 with HFC refi		POE	MT/MTZ	Polyolester oil 160PZ	Medium / High temperature
Hydrocar	bons	Danfo	oss does not au	ıthorize the use of hydrocarbons in Mar	neurop® MT/MTZ compressors

Capacity and other data for HFC blends refrigerants are not published in this document. Maneurop® compressors however are suitable for use with these refrigerants and can still be used as replacements in existing installations, see technical news FRCC.EN.049. and FRCC.EN.085. for more information on retrofit.

R22

R22 is an HCFC refrigerant and is still in use today. It has a low ODP (Ozone Depletion Potential) and therefore it will be phased out in the future. Check local legislation. Always use mineral oil 160P with R22.

The Maneurop® MT compressor is supplied with an initial mineral oil charge.

Alternatives R22, HFC retrofit

A wide variety of HFC blends exist. There were developed as temporary HCFC and HFC high GWP alternatives. Some examples are R422A/D

- R427A, ... Retrofit technical news have been issued to advice about use of these refrigerants.

Application guidelines	Refrigerants and lubricants	
R407C	Refrigerant R407C is an HFC refrigerant with similar thermodynamic properties to those of R22.	section "zeotropic refrigerant mixtures". R407C must be charged in the liquid phase.
	R407C has zero ozone depletion potential (ODP=0). Many installers and OEMs consider R407C to be the standard alternative for R22. R407C is a zeotropic mixture and has a temperature glide of about 11°F. For more specific information about zeotropic refrigerants; refer to	Always use the Maneurop® MTZ compressors with Danfoss 160PZ polyolester oil, which is supplied with the MTZ compressor for R407C applications.
R134a	Refrigerant R134a is an HFC refrigerant with thermodynamic properties comparable to those of the CFC refrigerant R12. R134a has zero ozone depletion potential (ODP = 0) and is commonly accepted as the best R12 alternative. For applications with high evaporating and high condensing temperatures, R134a is the ideal choice. R134a	is a pure refrigerant and has zero temperature glide. For R134a applications always use the Maneurop® MTZ compressor with Danfoss 160PZ polyolester oil which is supplied with the MTZ compressor.
R404A	Refrigerant R404A is an HFC refrigerant with thermodynamic properties comparable to those of the CFC refrigerant R502. R404A has zero ozone depletion potential (ODP = 0) and is commonly accepted as one of the best R502 alternatives. R404A is especially suitable for low evaporating temperature applications but it can also be applied to medium evaporating temperature applications. R404A is a mixture and has a very small temperature glide, and therefore must be charged in its liquid phase, but for most	other aspects this small glide can be neglected. Because of the small glide, R404A is often called a near-azeotropic mixture. For more information refer to section "zeotropic refrigerant mixtures". For low evaporating temperature applications down to -49°F, Maneurop® NTZ compressors should be used. Refer to the NTZ selection and application guidelines. For medium temperature R404A applications, always use the Maneurop® MTZ compressor with 160PZ polyolester oil which is supplied with the MTZ compressor.
R507	Refrigerant R507 is an HFC refrigerant with thermodynamic properties comparable to those of the CFC refrigerant R502 and virtually equal to those of R404A. R507 has no ozone depletion potential (ODP = 0) and is commonly accepted as one of the best R502 alternatives. As with R404A, R507 is particularly suitable for low evaporating temperature applications but it can also be used for medium evaporating temperature appli-	cations. R507 is an azeotropic mixture with no temperature glide. For low evaporating temperature applications down to -49°F, Maneurop® NTZ compressor should be used. Refer to the NTZ selection and application guidelines. For medium temperature R507 applications, always use the Maneurop® MTZ compressor and Maneurop® 160PZ polyolester oil which is supplied with the MTZ compressor.

Application guidelines	Refrigerants and lubricants	
R407A	Refrigerant R407A is an HFC with similar thermodynamic properties to those of R404A, R407A is a zeotropic refrigerant and has a temperature glide of about 6,6K. For more specific information about zeotropic refrigerant, refer to section "zeotropic refrigerants mixtures" and read FRCC. EN.085. R407A must be charged in liquid phase,	Use of R407A allow to comply with the new Fgaz regulation from 2015. R407A GWP is stated at 2107 [CO2=1,0]. Always use the Maneurop MTZ compressors with danfoss 160PZ polyolester oil, which is supplied with the MTZ compressors for R407A applications.
R407F	Refrigerant R407F is an HFC with similar thermodynamic properties to those of R404A, R407F is a zeotropic refrigerant and has a temperature glide of about 6,4K. For more specific information about zeotropic refrigerant, refer to section "zeotropic refrigerants mixtures" and read FRCC. EN.085. R407F must be charged in liquid phase, Use of R407F allow to comply with the new Fgaz	regulation from 2015. R407F GWP is stated at 1825 [CO2=1,0]. R407F is mainly suitable for high & medium temperature application- Always use the Maneurop MTZ compressors with danfoss 160PZ polyolester oil, which is supplied with the MTZ compressors for R407F applications
Hydrocarbons	Hydrocarbons such as propane, isobutane etc. are extremely flammable. Danfoss does not au- thorize the use of hydrocarbons with Maneurop®	MT or MTZ compressors in any way, even with a reduced refrigerant charge.

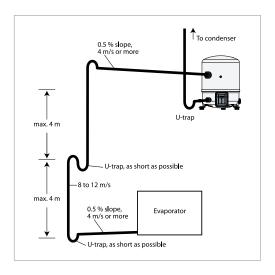
System design recommendations

Piping design

Oil in a refrigeration circuit is required to lubricate moving parts in the compressor. During normal system operation small oil quantities will continuously leave the compressor, with the discharge gas. With good system piping design this oil will return to the compressor. As long as the amount of oil circulating through the system is small it will contribute to good system operation and improved heat transfer efficiency. However, too large amounts of oil in the system will have a negative effect on condenser and evaporator efficiency. If, in a poorly designed system, the

amount of oil returning to the compressor is lower than the amount of oil leaving the compressor, the compressor will become starved of oil and the condenser, evaporator and/or refrigerant lines will become filled with oil. In such situations, additional oil charge will only correct the compressor oil level for a limited period of time and increase the amount of surplus oil in the rest of the system.

Only correct piping design can ensure a good oil balance in the system.

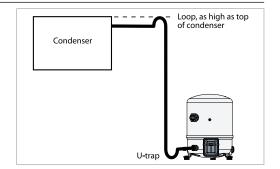

Suction lines

Horizontal suction line sections shall have a slope of 0.5% in the direction of refrigerant flow (5/8" per 10 ft of pipe). The cross-section of horizontal suction lines shall be such that the resulting gas velocity is at least 13 ft/s. In vertical risers, a gas velocity of 26 to 40 ft/s is required to ensure proper oil return. A U-trap is required at the foot of each vertical riser. If the riser is higher than 4 m, additional U-traps are required for each additional 4 meters. The length of each U-trap must be as short as possible to avoid the accumulation of excessive quantities of oil (see figure below).

For compressors mounted in parallel, the common suction riser should be designed as a double riser. Also refer to the News bulletin "Mounting instructions for installation of Maneurop® compressors in parallel " and "Parallel application guidelines".

Gas velocities higher than 40 ft/s will not con-

tribute to significantly better oil return. However they will cause higher noise levels and result in higher suction line pressure drops which will have a negative effect on the system capacity.


Note that the suction rotolock valves, which can be ordered from Danfoss as accessories, are designed for average pipe sizes, selected for systems running at nominal conditions.

The pipe sizes selected for specific systems may differ from these recommended sizes.

It is recommended that the suction lines are insulated to limit suction gas superheat.

Discharge line

When the condenser is mounted above the compressor, a loop above the condenser and a U-trap close to the compressor are required to prevent liquid draining from the condenser into the discharge line during standstill.

								0-
Application guidelines	System o	design reco	ommendat	tions				
Oil charge and oil separator	In most installations the initial of charge will be sufficient. In insta runs exceeding 66 ft, or with ma oil separator, additional oil may			tions with line oil traps or an	as in mu installati	ons with the r Itiple evapora ons, an oil sep er to page 26.	tor or multip	le condenser
Filter driers	Danfoss re	ecommends	vith MTZ cor using the Da , solid core fi	anfoss DML	filter drie	ers containing ended.	activated alu	ımina are
	Molecular	sieve filter d		ose beads from	sized. WI	r is to be overs hen selecting a its capacity (w	a drier, alway	s take into
				ns where acid OCL solid core	the syste	em refrigeratir nt charge.		
Operating limits High pressure	the complex exceed the high press depending	ressor, shoule e values shoure sure switch c g on the app	d the discha wn in the tal an be set to blication and	quired to stop rge pressure ole below. The lower values ambient con- be in a lockou	compres it. When must be port, wh	r be a manual ssor cycling are a discharge va connected to ich cannot be	ound the hig alve is used, t the service v	h pressure lin he HP switch
Low pressure	A low pres pressures.	-		ommended to a	·		I	
			MT R22	MTZ R407C	MTZ R407A	MTZ R407F	MTZ R134a	MTZ R404A / R50
Test pressure low side		psig	360	360	360	360	360	360
Working pressure range high side		psig	158 - 402	181 - 426	168 - 374	175 - 348	115 - 328	191 - 402
Working pressure range low side		psig	15 - 102	20 - 96	13 - 86	14 - 91	9 - 68	15 - 104
Relief valve opening pressure differ		psig	435	435	435	435	435	435
Relief valve closing pressure differe	ence	psig	115	115	115	115	115	115
* Relief valve fitted on 2 and 4 cyl. Low ambient temperature operation	temperatu cooled co	ure and conc ndensers wil		sure in air	should b line.)	scharge line is be taken when a air flow to co	designing th	
	This low pressure may be insufficient to supply enough liquid refrigerant to the evaporator. As a result the evaporator temperature will strongly decrease with the risk of frosting. At compressor start-up, the compressor can pull a deep vacuum and it can be switched off by the low pressure				Other problems can also occur when the compressor is operating at low ambient temperature. During shut down periods, liquid refrigerant can migrate to a cold compressor.			
	protection switch set occur. To a	n. Depending ting and del avoid these p	g on the low ay timer, sho problems, se	pressure ort cycling can veral solu-		conditions a l ly recommend		nkcase heater
	capacity: • Indoor lo	cation of co	ndensers	ing condenser		nt with 100% s neurop® comp d.		
	tion requi		igerant char	ge, which can	Refer to section "Liquid refrigerant migration &			

introduce other problems. A non-return valve

charge limits" for more details.

System design recommendations

Operating voltage and cycle

Operating voltage range

The operating voltage limits are shown in the table on page 4. The voltage applied to the motor terminals must always be within these table limits. The maximum allowable voltage unbalance for 3-phase compressors is 2%. Voltage unbal-

ance causes high current draw on one or more phases, which in turn leads to overheating and possible motor damage.

Voltage unbalance is given by the formula:

2 xVava

Vavg = Mean voltage of phases 1, 2 and 3 V1-2 = Voltage between phases 1 and 2

V1-3 = Voltage between phases 1 and 3 V2-3 = Voltage between phases 2 and 3.

Cycle rate limit

There may be no more than 12 starts per hour (6 when a soft start accessory is used). A higher number reduces the service life of the motor-compressor unit. If necessary, use an anti-short-cycle timer in the control circuit. A timeout of six minutes is recommended. The system

must be designed in such a way to guarantee a minimum compressor running time in order to provide proper oil return and sufficient motor cooling after starting.

Note that the oil return rate varies as a function of the system design.

Liquid refrigerant control and charge limit

Refrigeration compressors are basically designed as gas compressors. Depending on the compressor design and operating conditions, most compressors can also handle a limited amount of liquid refrigerant. Maneurop® MT and MTZ compressors have a large internal volume and can therefore handle relatively large amounts of liquid refrigerant without major problems. However even when a compressor can handle liquid refrigerant, this will not be favorable to its service life. Liquid refrigerant can dilute the oil, wash

oil out of bearings and result in high oil carry over, resulting in loss of oil from the sump. Good system design can limit the amount of liquid refrigerant in the compressor, which will have a positive effect on the compressor service life.

Liquid refrigerant can enter a compressor in different ways, with different effects on the compressor.

Off-cycle migration

During system standstill and after pressure equalization, refrigerant will condense in the coldest part of the system. The compressor can easily be the coldest spot, for example when it is placed outside in low ambient temperatures. After a while, the full system refrigerant charge can condense in the compressor crankcase. A large amount will dissolve in the compressor oil until the oil is completely saturated with refrigerant. If other system components are located at a higher level, this process can be even faster because gravity will assist the liquid refrigerant to flow back to the compressor. When the compressor is started, the pressure in the crankcase decreases rapidly.

At lower pressures the oil holds less refrigerant, and as a result part of the refrigerant will violently evaporate from the oil, causing the oil to foam. This process is often called "boiling".

The negative effects from migration on the compressor are:

- oil dilution by liquid refrigerant
- oil foam, transported by refrigerant gas and discharged into the system, causing loss of oil and in extreme situations risk for oil slugging
- in extreme situations with high system refrigerant charge, liquid slugging could occur (liquid entering the compressor cylinders).

Liquid floodback during operation

During normal and stable system operation, refrigerant will leave the evaporator in a superheated condition and enter the compressor as a superheated vapor. Normal superheat values at compressor suction are 9 to 54°F. However the refrigerant leaving the evaporator can contain

an amount of liquid refrigerant due to different reasons:

· wrong dimensioning, wrong setting or malfunction of expansion device

Application guidelines System design recommendations • evaporator fan failure or blocked air filters. permanent oil dilution In these situations, liquid refrigerant will continu-• in extreme situations with high system refrigously enter the compressor. erant charge and large amounts of floodback, The negative effects from continuous liquid liquid slugging could occur. floodback are: In heat pumps, change over from cooling to heat-The negative effects are: Liquid floodback at change over cycles in reversible heat pumps ing cycles, defrost and low load short cycles may · oil dilution lead to liquid refrigerant floodback or saturated • in extreme situations with high system refrigrefrigerant return conditions. erant charge and large amounts of floodback, liquid slugging could appear. Liquid floodback and zeotropic Liquid floodback in systems working with a liquid has a different composition than the vapor. refrigerants zeotropic refrigerant such as R407C introduces This new refrigerant composition may result in additional negative effects. A part of the refrigerdifferent compressor operating pressures and ant leaves the evaporator in liquid phase and this temperatures. Crankcase heater A crankcase heater protects against the off-cycle close as possible to the oil sump to ensure good migration of refrigerant and proves effective if heat transfer to the oil. oil temperature is maintained 18°F above the Belt crankcase heaters are not self-regulating. saturated LP temperature of the refrigerant. Tests Control must be applied to energize the belt must thereby be conducted to ensure that the heater once the compressor has been stopped appropriate oil temperature is maintained under and then to de-energize it while the compressor all ambient conditions. A PTC crankcase heater is running. The belt heater must be energized 12 is recommended on all stand-alone compressors hours before restarting the compressor following and split systems. PTC crankcase heaters are an extended down period. If the crankcase heater is not able to maintain the self-regulating. Under extreme conditions, such as very low amoil temperature at 18°F above the saturated LP bient temperature, a belt type crankcase heater temperature of the refrigerant during off cycles could be used in addition to the PTC heater; or if repetitive floodback is present a the Liquid although this is not a preferred solution for 1 and Line Solenoid Valve (LLSV) + pump-down cycle is 2 cylinder compressors. The belt crankcase heater required, eventually in conjunction with a suction must be positioned on the compressor shell as accumulator. Liquid line solenoid valve & In refrigeration applications, the Liquid Line Solecycle, the quantity of refrigerant in the low-prespump-down noid Valve (LLSV) is highly recommended. During sure side of the system will be reduced. the off-cycle, the LLSV isolates the liquid charge in the condenser side, thus preventing against A pump-down cycle design is required when refrigerant transfer or excessive migration of reevaporators are fitted with electric defrost heaters. frigerant into the compressor. Furthermore, when using a LLSV in conjunction with a pump-down Suction accumulator A suction accumulator offers considerable prorecommendations. As a general rule, Danfoss tection against refrigerant floodback at start-up, recommends to size the accumulator for at least during operation or after the defrost operation. 50% of the total system charge. Tests however This device also helps to protect against off-cymust be conducted to determine the optimal cle migration by means of providing additional size. internal free volume to the low pressure side of the system. A suction accumulator shall not be used in systems with zeotropic refrigerant mixtures. The suction accumulator must be selected in

accordance with the accumulator manufacturer

Sound and vibration management

Sound

Running compressors cause sound and vibration. Both phenomena are closely related.

Sound produced by a compressor is transmitted in every direction by the ambient air, the mounting feet, the pipework and the refrigerant in the pipework.

The easiest way to reduce the sound transmitted through ambient air is to fit a Danfoss acoustic hood accessory.

Because Maneurop® compressors are 100% suction gas cooled, and require no body cooling, they can be insulated. Values for the sound reduction achieved with acoustic hoods are shown also in the table below. For inside mounted compressors, sound insulation of the plantroom is an alternative to sound insulation of the compressor.

Sound transmitted by mounting feet, pipework and refrigerant should be treated the same way as for vibration. Please refer to the next section.

	Sound power dB		Sound power dB	Acoustic hood accessory		
	without hood with hood*		without hood	with hood*	accessory	
MTZ018	73	65	73	66		
MTZ022	74	68	77	71		
MTZ028	71	64	73	66	120Z0575	
MTZ032	71	64	73	66	12020373	
MTZ036	70	64	76	69		
MTZ040	70	65	72	67		
MTZ044	80	74	82	76		
MTZ050	83	76	84	78		
MTZ056	81	74	81	74	120Z0576	
MTZ064	80	74	84	78	12020376	
MTZ072	79	72	82	75		
MTZ080	79	73	84	78		
MTZ100	85	79	87	81		
MTZ125	84	78	86	80	120Z0577	
MTZ144	83	77	86	80	12020377	
MTZ160	83	77	86	80		

Sound power level for MTZ with R404A, motor code 4 Te = 14°F, Tc= 113°F

Vibration

The mounting grommets delivered with the compressor should always be used. They reduce the vibration transmitted by the compressor mounting feet to the base frame.

The base on which the compressor is mounted should be sufficiently rigid and of adequate mass to ensure the full effectiveness of the mounting grommets.

The compressor should never be directly mounted to the base frame without the grommets, otherwise high vibration transmission would occur and the compressor service life reduced. Suction and discharge lines must have adequate flexibility in 3 planes. Eventually vibration absorbers may be required.

Care must be taken to avoid tubing having resonant frequencies close to those of the compressor frequency.

Vibration is also transmitted by the refrigerant gas. Maneurop® compressors have built in mufflers to reduce this vibration.

To further reduce vibration an extra muffler can be installed.

Note: Maneurop® MT & MTZ compressors have been designed and qualified for stationary equipment used in A/C and Refrigeration applications. Danfoss doesn't warrant these compressors for use in mobile applications, such as trucks, railways, subways, etc...

^{*}Sound data with hood are valid for the Danfoss acoustic hood accessory.

As first approach, use these figures with -3 dBA reduction for MT models applied with R22.

Installation and service

System cleanliness

System contamination is one of the main factors affecting equipment reliability and compressor service life.

Therefore it is important to ensure system cleanliness when manufacturing a refrigeration system. During the manufacturing process, system contamination can be caused by:

- Brazing and welding oxides
- Filings and particles from removing burrs from pipe-work
- Brazing flux
- Moisture and air.

Only use clean and dehydrated refrigeration grade copper tubes and silver alloy brazing ma-

terial. Clean all parts before brazing and always purge nitrogen or CO₂ through the pipes during brazing to prevent oxidation. If flux is used, take every precaution to prevent leakage into the piping. Do not drill holes (e.g. for schräder valves) in parts of the installation that are already completed, when filings and burrs can not be removed. Carefully follow the instructions below regarding brazing, mounting, leak detection, pressure test and moisture removal. All installation and service work shall only be done by qualified personnel respecting all procedures and using tools (charging systems, tubes, vacuum pump, etc.) dedicated for the refrigerant that will be used.

Compressor handling, mounting and connection to the system

Compressor handling

Maneurop® MT and MTZ compressors are provided with a lifting lug. This lug should always be used to lift the compressor. Once the compressor is installed, the compressor lifting lug should

never be used to lift the complete installation. Keep the compressor in an upright position during handling.

Compressor mounting

Mount the compressor on a horizontal plane with a maximum slope of 3 degrees. All compressors are supplied with three or four rubber mounting grommets, each complete with metal sleeves and nuts and bolts. Refer to the section "Outline drawings".

These grommets largely attenuate the compressor vibration transmitted to the base frame. The compressor must always be mounted with these grommets. Refer to the table below for torque values.

Designation		Recommended torque (lbf.ft)
Cable screw of T connector in electrical box	screw 10/32 - UNF x 3	2
	1"	59
Rotolock valves and solder sleeves	1"1/4	66
	1"3/4	81
Mounting grommet bolts	1 - 2 - 4 cylinder	11
Oil sight glass	-	37
Oil equalization connection	1 - 2 - 4 cylinder	22

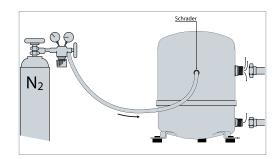
Compressor connection to the system

New compressors have a protective nitrogen holding charge. The suction and discharge caps should only be removed just before connecting the compressor to the installation to avoid air and moisture entering the compressor.

Whenever possible the compressor must be the last component to be integrated into the system. It is advisable to braze the solder sleeves or service valves to the pipework before the compres-

sor is mounted. When all brazing is finished and when the total system is ready, the compressor caps can be removed and the compressor can be connected to the system with a minimum exposure to ambient air.

If this procedure is not possible, the sleeves or valves may be brazed to the pipes when mounted on the compressor.



Installation and service

In this situation nitrogen or CO₂ must be purged through the compressor via the schrader valve to prevent air and moisture ingress. Purging must start when the caps are removed and proceeded during the brazing process.

When rotolock valves are used on the compressor, they shall be closed immediately after mounting, thus keeping the compressor isolated from atmosphere or from a not yet dehydrated system.

Note: When the compressor is built into a "pack" or "rack" configuration which is not installed immediately on its final location, a vacuum pulldown and moisture removal must be performed to this pack (rack) as if it were a complete system (see below). The pack must be charged with nitrogen or CO₂ and open tubes must be blocked with caps or plugs.

System pressure test

It is recommended that an inert gas such as nitrogen be used for pressure testing. Dry air may also be used but care should be taken since it can form an inflammable mixture with the compressor oil. When performing a system pressure test, the maximum allowed pressure for the different components should not be exceeded.

For MT/MTZ compressors the maximum test pressures are shown in the table beside.

	1-2-4 cylinder compressors
Maximum compressor test pressure, low side	362 psi(g)
Maximum compressor test pressure, high side	435 psi(g)

Do not exceed 435 psig pressure difference between high pressure side and low pressure side of the compressor because this will open the internal compressor relief valve.

Leak detection

Whenever possible (if valves are present) the compressor must be kept isolated from the system. Perform a leak detection using the final refrigerant. Pressurize with nitrogen or another neutral gas and use a leak detector for the applied refrigerant. Any spectrometric detection system using helium can also be applied.

Eventual leaks shall be repaired respecting the instructions written above. It is not recommended to use other gasses such as oxygen, dry air or acetylene as these gasses can form an inflammable mixture. Never use CFC or HCFC refrigerants

for leak detection of HFC systems.

Note 1: Leak detection with refrigerant may not be allowed in some countries. Check local regulations.

Note 2: Leak detecting additives shall not be used as they may affect the lubricant properties.

Warranty may be voided if leak detecting additives have been used.

Vacuum pull-down moisture removal

Moisture obstructs the proper functioning of the compressor and the refrigeration system.

Air and moisture reduce service life and increase condensing pressure, and cause excessively high discharge temperatures, which can destroy the lubricating properties of the oil. Air and moisture also increase the risk of acid formation, giving rise to copper platting. All these phenomena can cause mechanical and electrical compressor failure.

Installation and service

To eliminate these factors, a vacuum pulldown according to the following procedure is recommended:

① Whenever possible (if valves are present) the compressor must be kept isolated from the system. ② After the leak detection, the system must be pulled-down under a vacuum of 500 microns. A two stage vacuum pump shall be used with a capacity appropriate to the system volume. It is recommended to use connection lines with a large diameter and to connect these to the service valves and not to the schrader connection to avoid too high pressure losses.

③ When the vacuum level of 500 micron is reached, the system must be isolated from the vacuum pump. Wait 30 minutes during which the system pressure should not rise. When the pressure rapidly increases, the system is not leak tight. A new leak detection must be performed and the vacuum pull-down procedure should be restarted from step 1. When the pressure slowly

increases, this indicates the presence of moisture. In this case step 2 and 3 should be repeated.

- ④ Connect the compressor to the system by opening the valves. Repeat step 2 and 3.
- ⑤ Break the vacuum with nitrogen or the final refrigerant.
- © Repeat step 2 and 3 on the total system. At commissioning, system moisture content may be up to 100 ppm. During operation the filter drier must reduce this to a level < 20 ppm.

Warning: Do not use a megohmmeter or apply power to the compressor while it is under vacuum, as this may cause motor winding damage. Never run the compressor under vacuum as it may cause compressor motor burn-out.

Start-up

Before initial start-up or after a prolonged shut down period, energise the crankcase heater (if fitted) 12 hours prior to start-up, or turn on power for single phase compressors with trickle circuit.

Refrigerant charging

Zeotropic and "near-azeotropic" refrigerant mixtures such as R407C and R404A must always be charged in the liquid phase. For the initial charge, the compressor must not run and service valves must be closed. Charge refrigerant as close as possible to the nominal system charge before starting the compressor. Then slowly add refrigerant in the liquid phase, on the low pressure side as far away as possible from the running compressor.

The refrigerant charge quantity must be suitable for both winter and summer operation. Refer also to section "Protection against flooded starts and liquid floodback" for information about refrigerant charge limits.

WARNING: when a liquid line solenoid valve is used, the vacuum in the low pressure side must be broken before applying power to the system.

Oil charge and oil level

The oil charge must be checked before commissioning (1/4 to 3/4 of the oil sight glass). Check the oil level again after a minimum of 2 hours operation at nominal conditions. In most installations the initial compressor oil charge will be sufficient. In installations with line runs exceeding 66 ft or with many oil traps or an oil separator, additional oil may be required. Normally the quantity of oil added should be no more than 2% of the total refrigerant charge (this percentage does not take into account oil contained in

accessories such as oil separators or oil traps). If this amount has already been added and the oil level in the compressor keeps decreasing, the oil return in the installation is insufficient. Refer also to section "Piping design".

In installations where slow oil return is likely such as in multiple evaporator or multiple condenser installations, an oil separator is recommended. Refer to the table section "Refrigerants and lubricants" to select the correct oil.

Application guidelines Installation and service Suction gas superheat

The optimum suction gas superheat is 14.5°F. A lower superheat value will contribute to better system performance (higher mass flow and more efficient use of evaporator surface). Low superheat values however increase the risk of unwanted liquid floodback to the compressor.

For very low superheat values an electronically controlled expansion valve is recommended.

The maximum allowable superheat is about 54°F. Higher values can be accepted but in these cases, tests have to be performed to check that the maximum discharge temperature of 266°F will not be exceeded. Note that high superheat values decrease the compressor application envelope and system performance.

Ordering information and packaging

Packaging

		Single p	ack	Multipack			Industrial pack				
	Model	Dimensions (in)	Gross weight (lbs)	Nbr	Dimensions (in)	Gross weight (lbs)	Static stacking	Nbr	Dimensions (in)	Gross weight (lbs)	Static stacking
	MT/MTZ 018		50.7			435				613	
	MT/MTZ 022		50.7			435		12		613	
nder	MT/MTZ 028	l: 13.0	55.1	0	l: 45.3	470	4		l: 45.3 w: 31.5 h: 19.7	666	4
1 cylinder	MT/MTZ 032	w: 11.6 h: 15.2	57.3	8	w: 31.5 h: 20.1	487				693	4
·	MT/MTZ 036		59.5			505				719	
	MT/MTZ 040		59.5			505				719	
ers	MT/MTZ 044-050	l: 15.6	86.0		l: 45.3	538	4		l: 45.3	520	
2 cylinders	MT/MTZ 056-064	w: 14.4	90.4	6	w: 31.5	565		6		547	4
2 0	MT/MTZ 072-080	h: 17.9	94.8		h: 23.6	591				573	
	MT/MTZ 100		154.4			642				840	
nder	MT/MTZ 125	l: 22.4	161.0	4	l: 45.3 w: 31.5	668	4	6	l: 45.3 w: 31.5 h: 28.0	880	4
4 cylinders	MT/MTZ 144	w: 15.7 h: 26.4	167.6	4	w: 31.5 h: 32.3	695	4	6		920	4
	MT/MTZ 160		167.6			695				920	

Single pack:

One compressor in a cardboard box. In some publications this packaging may be indicated as "individual packaging".

Multipack: A full pallet of compressors, each individually packed in a cardboard box. Mainly dedicated to wholesalers and Danfoss distribution

Industrial pack:

A full pallet of unpacked compressors. Mainly dedicated to OEM customers. In some publications this packaging may be indicated as "Multiple packaging".

Nbr: Number of compressor in a pack

MT compressors in industrial pack

R22

		Code no.									
Compressor model	1	3	4	5	9						
compressor moder	208-230/1/60	200-230/3/60	460/3/60 400/3/50	230/1/50	380/3/60						
MT018	MT18-1VM	MT18-3VM	MT18-4VM	MT18-5VM	-						
MT022	MT22-1VM	MT22-3VM	MT22-4VM	MT22-5VM	MT22-9VM						
MT028	MT28-1VM	MT28-3VM	MT28-4VM	MT28-5VM	MT28-9VM						
MT032	MT32-1VM	MT32-3VM	MT32-4VM	MT32-5VM	MT32-9VM						
MT036	MT36-1VM	MT36-3VM	MT36-4VM	MT36-5VM	MT36-9VM						
MT040	MT40-1VM	MT40-3VM	MT40-4VM	-	-						
MT044	MT44-1VM	MT44-3VM	MT44-4VM	-	MT44-9VM						
MT050	MT50-1VM	MT50-3VM	MT50-4VM	-	MT50-9VM						
MT056	MT56-1VM	MT56-3VM	MT56-4VM	-	MT56-9VM						
MT064	MT64-1VM	MT64-3VM	MT64-4VM	-	MT64-9VM						
MT072	-	MT72-3VM	MT72-4VM	-	MT72-9VM						
MT080	-	MT80-3VM	MT80-4VM	-	MT80-9VM						
MT100	-	MT100-3VM	MT100-4VM	-	MT100-9VM						
MT125	-	MT125-3VM	MT125-4VM	-	MT125-9VM						
MT144	-	MT144-3VM	MT144-4VM	-	MT144-9VM						
MT160	-	MT160-3VM	MT160-4VM	-	MT160-9VM						

 $VM = Compressor, threaded \ oil \ sight \ glass, \ 3/8'' \ oil \ equalization \ connection$

MT compressors in single pack

R22

	Code no.										
Compressor model	1	3	4	5	6	7	9				
Compressor moder	208-230/1/60	200-230/3/60	460/3/60 400/3/50	230/1/50	230/3/50	575/3/60 500/3/50	380/3/60				
MT018	MT18-1VI	MT18-3VI	MT18-4VI	MT18-5VI	-	-	-				
MT022	MT22-1VI	MT22-3VI	MT22-4VI	MT22-5VI	MT22-6VI	-	MT22-9VI				
MT028	MT28-1VI	MT28-3VI	MT28-4VI	MT28-5VI	MT28-6VI	-	-				
MT032	MT32-1VI	MT32-3VI	MT32-4VI	MT32-5VI	MT32-6VI	-	MT32-9VI				
MT036	MT36-1VI	MT36-3VI	MT36-4VI	MT36-5VI	MT36-6VI	-	MT36-9VI				
MT040	MT40-1VI	MT40-3VI	MT40-4VI	-	MT40-6VI	-	-				
MT044	MT44-1VI	MT44-3VI	MT44-4VI	-	-	-	MT44-9VI				
MT050	MT50-1VI	MT50-3VI	MT50-4VI	-	MT50-6VI	-	MT50-9VI				
MT056	MT56-1VI	MT56-3VI	MT56-4VI	-	MT56-6VI	MT56-7VI	MT56-9VI				
MT064	MT64-1VI	MT64-3VI	MT64-4VI	-	MT64-6VI	-	MT64-9VI				
MT072	-	MT72-3VI	MT72-4VI	-	MT72-6VI	-	MT72-9VI				
MT080	-	MT80-3VI	MT80-4VI	-	MT80-6VI	-	MT80-9VI				
MT100	-	MT100-3VI	MT100-4VI	-	MT100-6VI	MT100-7VI	MT100-9VI				
MT125	-	MT125-3VI	MT125-4VI	-	MT125-6VI	MT125-7VI	MT125-9VI				
MT144	-	MT144-3VI	MT144-4VI	-	MT144-6VI	MT144-7VI	MT144-9VI				
MT160	-	MT160-3VI	MT160-4VI	-	MT160-6VI	MT160-7VI	MT160-9VI				

VI = Single compressor, threaded oil sight glass, 3/8" oil equalization connection

MTZ compressors in industrial pack

R404A / R507 / R134a / R407A/C/F

	Code no.									
Compressor model	1	3	4	5	9					
Compressor model	208-230/1/60	200-230/3/60	460/3/60 400/3/50	230/1/50	380/3/60					
MTZ018	MTZ18-1VM	MTZ18-3VM	MTZ18-4VM	MTZ18-5VM	-					
MTZ022	MTZ22-1VM	MTZ22-3VM	MTZ22-4VM	MTZ22-5VM	MTZ22-9VM					
MTZ028	MTZ28-1VM	MTZ28-3VM	MTZ28-4VM	MTZ28-5VM	MTZ28-9VM					
MTZ032	MTZ32-1VM	MTZ32-3VM	MTZ32-4VM	MTZ32-5VM	MTZ32-9VM					
MTZ036	MTZ36-1VM	MTZ36-3VM	MTZ36-4VM	MTZ36-5VM	MTZ36-9VM					
MTZ040	MTZ40-1VM	MTZ40-3VM	MTZ40-4VM	-	-					
MTZ044	MTZ44-1VM	MTZ44-3VM	MTZ44-4VM	-	MTZ44-9VM					
MTZ050	MTZ50-1VM	MTZ50-3VM	MTZ50-4VM	-	MTZ50-9VM					
MTZ056	MTZ56-1VM	MTZ56-3VM	MTZ56-4VM	-	MTZ56-9VM					
MTZ064	MTZ64-1VM	MTZ64-3VM	MTZ64-4VM	-	MTZ64-9VM					
MTZ072	-	MTZ72-3VM	MTZ72-4VM	-	MTZ72-9VM					
MTZ080	-	MTZ80-3VM	MTZ80-4VM	-	MTZ80-9VM					
MTZ100	-	MTZ100-3VM	MTZ100-4VM	-	MTZ100-9VM					
MTZ125	-	MTZ125-3VM	MTZ125-4VM	-	MTZ125-9VM					
MTZ144	-	MTZ144-3VM	MTZ144-4VM	-	MTZ144-9VM					
MTZ160	-	MTZ160-3VM	MTZ160-4VM	-	MTZ160-9VM					

VM = Compressor, threaded oil sight glass, 3/8" oil equalization connection

MTZ compressors in single pack

R404A / R507 / R134a / R407A/C/F

	Code no.											
Compressor	1	3	4	5	6	7	9					
model	208-230/1/60	200-230/3/60	460/3/60 400/3/50	230/1/50	230/3/50	575/3/60 500/3/50	380/3/60					
MTZ018	MTZ18-1VI	MTZ18-3VI	MTZ18-4VI	MTZ18-5VI	-	-	-					
MTZ022	MTZ22-1VI	MTZ22-3VI	MTZ22-4VI	MTZ22-5VI	MTZ22-6VI	-	MTZ22-9VI					
MTZ028	MTZ28-1VI	MTZ28-3VI	MTZ28-4VI	MTZ28-5VI	MTZ28-6VI	-	MTZ28-9VI					
MTZ032	MTZ32-1VI	MTZ32-3VI	MTZ32-4VI	MTZ32-5VI	MTZ32-6VI	MTZ32-7VI	MTZ32-9VI					
MTZ036	MTZ36-1VI	MTZ36-3VI	MTZ36-4VI	MTZ36-5VI	MTZ36-6VI	MTZ36-7VI	MTZ36-9VI					
MTZ040	MTZ40-1VI	MTZ40-3VI	MTZ40-4VI	-	MTZ40-6VI	-	-					
MTZ044	MTZ44-1VI	MTZ44-3VI	MTZ44-4VI	-	MTZ44-6VI	MTZ44-7VI	MTZ44-9VI					
MTZ050	MTZ50-1VI	MTZ50-3VI	MTZ50-4VI	-	MTZ50-6VI	MTZ50-7VI	MTZ50-9VI					
MTZ056	MTZ56-1VI	MTZ56-3VI	MTZ56-4VI	-	MTZ56-6VI	MTZ56-7VI	MTZ56-9VI					
MTZ064	MTZ64-1VI	MTZ64-3VI	MTZ64-4VI	-	MTZ64-6VI	-	MTZ64-9VI					
MTZ072	-	MTZ72-3VI	MTZ72-4VI	-	MTZ72-6VI	-	MTZ72-9VI					
MTZ080	-	MTZ80-3VI	MTZ80-4VI	-	MTZ80-6VI	-	MTZ80-9VI					
MTZ100	-	MTZ100-3VI	MTZ100-4VI	-	MTZ100-6VI	MTZ100-7VI	MTZ100-9VI					
MTZ125	-	MTZ125-3VI	MTZ125-4VI	-	MTZ125-6VI	MTZ125-7VI	MTZ125-9VI					
MTZ144	-	MTZ144-3VI	MTZ144-4VI	-	MTZ144-6VI	MTZ144-7VI	MTZ144-9VI					
MTZ160	-	MTZ160-3VI	MTZ160-4VI	-	MTZ160-6VI	MTZ160-7VI	MTZ160-9VI					

VI = Single compressor, threaded oil sight glass, 3/8" oil equalization connection

Danfoss Commercial Compressors

is a worldwide manufacturer of compressors and condensing units for refrigeration and HVAC applications. With a wide range of high quality and innovative products we help your company to find the best possible energy efficient solution that respects the environment and reduces total life cycle costs.

We have 40 years of experience within the development of hermetic compressors which has brought us amongst the global leaders in our business, and positioned us as distinct variable speed technology specialists. Today we operate from engineering and manufacturing facilities spread across three continents.

Our products can be found in a variety of applications such as rooftops, chillers, residential air conditioners, heatpumps, coldrooms, supermarkets, milk tank cooling and industrial cooling processes.

http://danfoss.us.com

Danfoss Commercial Compressors, BP 331, 01603 Trévoux Cedex, France | +334 74 00 28 29

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.