در اين قسمت به معرفى انواع رادياتور و نحوه انتخاب آن مى پردازيم.

- تاريختچه رادياتور

رادياتورهاى شوفاث امروزه جزو پر كاربردترين تجهيزات گرمايشى در ساختمان هاى عمومى و منازل مى باشند. اولين شخصى كه سيستم گرمايش آبگرم مر كزى را ابداع نمود تريواله سوئدى در سال IVIS ميلادى بود .
در سال •IVV حيمزوات برای اولين بار از رادياتور هاى حند تكه كه با بخار آب گرم مى شد براى گرمايش
 آبگرم را كه مججز به مخزن انبساط بود، به نام خود به ثبت رساند . كاملترين سيستم گرمايش آبگرم كه
 گرديد . از سال • 190 كه چميهاى آبگردان وارد سيستم هاى گرمايشى گرديد رويكرد عمومى مردم به استفاده از شوفاز به طور قابل ملاحظه اى افزايش يافت. نحوه گرم شدن اتاق توسط رادياتور به صورت جابجايى آزاد يا طبيعى ميباشد. هواى بالاى رادياتور معمولا به دليل گرم شدن سبك شده و به طرف بالا حر كت مى كند و هواى سرد طرف مقابل اتاق جايگزين آن مى شود به همين ترتيب يك چرخش طبيعى در جريان هواى اتاق بوجود آمده و دماى تمامى نقاط اتاق بالا رفته و اتاق كرم مى شود .
در اين راستا سيستم حرارت مر كزى (شوفاز) با بهره گيرى از سيال عامل جهت انتقال انرخى حرارتى از واحد مولد گر ما ، به لحاظ سهولت استفاده و دسترسى آسان، هزينه نصب و نگَهدارى مناسب، عدم ايجاد آلودگيهاى اجتناب نایذيردر سيستمهاى احتراقى (نظير بخارى) از چند دهه پيش تاكنون در بسيارى از اماكن عمومى و خصوصى نظير منازل ،مجتمع هاى مسكونى ، ساختمانهاى ادارى،ورزشكاهـا، بيمارستانها و... از كاربرد موفقى برخوردار بوده است. در مجموعه مولد گرمايى، رادياتور به عنوان جزءٍ آشكار سيستم و عامل اصلى انتشار حرارت به محيط اطراف در يكـ چرخه گرمايی، عهده دار نقش اساسى در نيل به توقعات همه جانبه ظاهرى تزئينى، راندمان و عملكرد مطلوب بوده از اينرو، طراحى و ساخت آن مد نظر قرار دادن شرايط ويخه اى همچون ظرافت و زيبائى، ايمنى و استحكام ، حجم كم و عمر طولانى را به عنوان پارامترهاى اوليه الزامى مينمايد.

رادياتورها و انواع آن :
رادياتورها يكى از دستگاه هاى پخش كننده ى حرارت هستند كه گرما را به اتاق منتقل كرده و در نتيجه دماى آب كاهش مى يابد وآب توسط لوله بر گشت به طرف پكيج يا موتورخانه رفته و براى جذب مجدد گرما به داخل مبدل هدايت مى شود و بار ديگر اين چرخه تكرار مى شود. در انواع مختلفى از نظر جنس و اندازه به

بازار مصرف عرضه مى شوند .

اين رادياتورها ساده ترين نوع رادياتورمى باشد كه از لوله كالوانيزه يا سياه به اندازه هاى هاى مختلف ساخته می ما شوند و ممكن است بصورت لوله هاى ماريپج يا بطورموازى (عمودى يا افقى) كه در دوطرف به دو دو لوله قطور متصل شده باشند ساخته شوند. آبكرم يا بخار از يك طرف وارد و پس از تبر تبادل حرارت در لوله ها ها از طرف ديكر خارج مى شود، از اين رادياتورها براى كرم كردن بعضى از نقاط كم اهميت مثل انبارى يا كلخانه استفاده مى شود . برای اينكه سطوح حرارتى اين نوع رادياتور را افزايش دهند اطراف لوله ها تيغه ها يا پره هايى بوسيله پولكهاى آلومينيومى متصل ميكنند و بنام رادياتو رهاى لوله ای پرده دار معرفى ميكردند.

「. رادياتور هاى تخت :

اين رادياتورها طورى ساخته شده اند كه معمولاٌ در كنار سطوح اصلى تبادل حرارت سطح صاف نسبتا بزرگى براى تبادل حرارت بيشتر ييش بينى ميشود و انواع آن عبارتند از: رادياتور صفته ای ديوارى ، رادياتور تخت ،

رادياتور صفحه ای .
رادياتور صفحه ای ديوارى : ممكن است از يك سطح مجوف چدنى و يا بصورت قطعه فولادى يك تكه و يا به فرم لوله هاى فولادى كه روى يك صفته فلزى جوش شا شار شده اند تشكيل يابد و در ديوار
 ايزوله مى شود و سطح جلو ميتواند روى ديوار و يا زير يك لايه نازكى قراركيرد، در اين رادياتورها قسمت اعظم حرارت بوسيله تشعشع و مقدارى نيز بوسيله جا بجايى هدايت ميشود. اين نوع رادياتورها معمولا" در محلهايى كه جاكيرى وسايل انتقال حرارت مورد اشكال مى باشد بكار برده مى
شوند و عيب عمده آنها كرانى قيمت است.

رادياتورهاى تخت : تشكيل شده از لوله هاى ساخته شده از ورق پرس شده (پروفيل) كه ضخامت

 ميكيرند و تبادل حرارت در آنها بيشتر از طريق جابجايى صورت ميكيرد ، محاسن آنها در كوتاهى ارتفاع و صافى سطوح خارجى ميباشد. - رادياتور هاى صفحه ای : از پروفيل ساخته شده و بصورت صفحه ای كه سطوح شيار دراز روى آن ديده ميشود، مورد استفاده قرار مى گيرد. معمولا" باجوش دادن دو صفحه روى همديكر ساخته مى
شود و مثل رادياتورهاى معمولى و تخت پهلوى ديوار نصب مى شود.

ب.
اين رادياتورها معمولترين نوعى هستند كه در حرارت مركزى با آب مورد استفاده قرار مى كيرند و بر
 فولادى و يا آلومينيومى ساخته شده و به اندازه هاى مختلف و استاندارد در دسترس مى باشد.

حال به تشريح انواع رادياتورهاى فولادى ، آلومينومى و چدنى مى پردازیم.
-رادياتورهاى فولادى و ساختمان آنها :
رادياتورها ى فولادى از ورق هاى آهن به ضخامت (هץ/ ا ميلى متر) در ابعاد و اندازه هاى مختلف، معمولا" به صورت پره ای ساخته مى شوند . هر پره ی رادياتور شامل دو صفحه ی پرس شده است كه بر روى هم قرار گرفته ، لبه ى آن ها به يك ديكر جوش مقاومتى داده مى شود . با قرار گرفتن دو صفحه ى پرس شده بر روى هم ، مسيرهای راه عبور آب در حد فاصل دو صفحه ايجاد مى گر دد. پره هاى توليد شده ،در كارخانه به يكديكر متصل مى شوند تا رادياتور با تعداد پره ى مورد نظر توليد شود.كارخانه ها تعداد پره هاى رادياتورهاى فولادى را برحسب سفارش توليد ميكنند . اندازه ى رادياتورهاى فولادى برحسب پهناى پره و ارتفاع محور تا محور كلكتورهاى بالا و پايين آن بيان مى شود .
 محور (همان اكس) لوله هاى بر گشت • • هميلى متر است. رادياتورهاى فولادى از نظر ارتفاع و چهنا دراندازه هاى مختلفى ساخته شده، به بازار عرضه مى شوند كه هر كدام برحسب ابعاد و اندازه ى محل نصب رادياتور در داخل ساختمان، مورد استفاده قرار مى گيرند .

نكات مهم در خصوص رادياتور فولادى:
پره رادياتورهاى فولادى به صورت يك بلوک غير قابل تفكيك توليد مى شوند يعنى در خارج از كارخانه نمىتوان به آنها پره اضافه كرد و يا كم نمود.

فر آيند توليد رادياتور فولادى نياز به دانش فنى پيچیدهاى نداشته و مراحل آن عمليات متداول درصنايع فلزى
 (اكسى استيلن)، پوشش دهى با رنگ و كنترل كيفيت را شامل بوده و عمده مواد مصرفى آن را ورق فولادى تشكيل مى دهد.
شكل ذيل نمونه ای از رادياتور فولادى را نشان مى دهد :

- رادياتورهاى آلومينيومى و ساختمان آنها :

 در طرف ديگر رزوه چپ گرد می می شودبه اين ترتيب رادياتورها را مى توان به وسيله ى مغزى هايى كه نصف طول آن دنده ى راست گرد و نصف ديكر آن ،چپ گرد است بهر يكديكر متصل نمود .به عنوان مثال براى

نكات مهم در خصوص رادياتور آلومينومى :

ا. در انواع مختلفى از نظر چهنا/ضخامت/یره، ارتفاع محور تا محور(فاصله كلكتورهاى بالا و پايين) ، شكل ظاهرى و قدرت حرارتى متفاوت ، توليد و به بازار عرضه مى شوند r. رادياتور آلومينيومى سبكتر، زيباتر و با ضريب هدايت حرارتى بالاترى نسبت به فولادیى باد بها بازار عرضه ميشود ولى از لحاظ قيمت كرانتر مى باشد. معمولاً در فضاهايى كه رطوبت زياد دارد مانند حمامها بايستى حتماً از رادياتور آلومينيومى استفاده الـادي كردي
 ع ع انتخاب آلومينيوم به عنوان فلز برتر در توليد رادياتور به اين دليل بوده است كه پس از طـر طلا ، نقره و مس چهارمين فلزى است كه قدرت رسانايى بالايى دارد و به وفور نيز در طبيعت يافت مى الشوده.
 متصل مى كنندكه يك بلوكى راتشكيل مى دهند.

THERMAL AND DIMENSIONAL CHARACTERISTICS

MODEL	DIN EN442				A	B	C	D	E	F	G	Woter content	Weight of element
TwMOL/R	Watt	Kcal/h	Btu/h	η	mm	mm	mm	mm	mm	mm	Inch	Liter	Kg
500	145	125	496	1.317	585	500	90	61	25	150	$1 / 4$	0.47	1.50

Outpats of other Mi calcalated as follom: $O=O \operatorname{an}\left(\frac{\Delta t}{50}\right)^{n}$

THERMAL AND DIMENSIONAL CHARACTERISTICS													
MODEL		DIN EN	142		A	8	c	D	E	F	G	$\begin{gathered} \text { Witer } \\ \text { content } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Weight } \\ \text { of element } \end{array}$
TEMPO	Watt	Kcal/h	Btu/h	η	mm	mm	mm	mm	mm	mm	tnch	Liter	Kg
600	194	167	662	1.321	678	600	97	80	25	150	1	0.52	1.87
500	162	140	553	1.306	585	500	95	80	25	150	1	0.59	1.71
350	125	107	426	1.306	430	350	95	80	25	150	1	0.34	1.29

رادباتور مدل تببو و جدول مشنخصات أن

- رادياتورهاى چֶدنى و ساختمان آنها:

رادياتورهاى چدنى به صورت پره ای و به روش ريخته گرى در ابعاد و اندازه هاى مختلف از چدن ساخته
 "جازدنى" (كه دو سر آن به صورت كونيكـ مخروط ناقص تراشيده شده است)انجام مى گردد. مزيت اين رادياتور نسبت به رادياتورهاى فولادى، مقاومت بيش تر آن در مقابل زنت زدگى است و به همين علت جاهاى مرطوب مثل حمام مناسب است. عيب اين رادياتور اين است كه خطرشكستگى آن بيشتراست .لازم به ذكر است كه با متداول شدن استفاده از رادياتور هاى آلومينيومى روز به روز كاربرد رادياتور چدنى

انواع رادياتور در نگاه كلى			
رادياتور چدنى	رادياتور فولادى	رادياتور آلومينومى	
بسيار قديمى	جديد	بسيار جديد	تكنولوڭى
بسيار محدود	بسيار زيا د	محدود	انتخاب مدل
ارویֶى شرقى ،(وسيه	اروپیى مر كزى و شمالى	اروپֶى جنوبى	منطقه
ارزان ترين	ارزان تر از آلومينيومى	گران ترين	قيمت
سنگين ترين	سنگين تر از آلومينيومى	سبك ترين	وزن
	زيبايى و سليقه مشتريان	انتقال حرارت ،سهولت نصب	نقاط قوت

نحوه مقايسه و انتخاب رادياتور

درصورت مقايسه اطلاعات فنى رادياتورها ، اطلاعات ذيل مورد نياز ميباشد.

『 رادياتور مى بايست مطابق استاندارد ملى ايران باشد.
ل مشخصات سازنده رادياتور مى بايست اعلام گردد.
§ ظرفيت حرارتى براى رادياتوردر اختلاف دمايى • هو •؟ درجه اعلام گردد.
『 منحنى نمايى تغييرات ظرفيت حرارتى با تغييردرجه حرارت نمايش داده شود .
\checkmark اندازه، نوع و موقعيت اتصالات آن مشخص باشد.
ل وزن آن مشخص گردد.

$$
\text { マ } \checkmark \text { ماكزيمم فشار عملكرد و ماكزيمم دماى عملكرد رادياتور اعلام گردد. }
$$

تعاريف مهم در رادياتورها :

ا. سطح تبادل حرارتى پره ها:
سطح تبادل حرارتى در پره هاى رادياتور به سطحى گغته مى شود كه در معرض تبادل حرارت با
محيط قرار مى كيرد بطور مثال سطح تبادل حرارت هر پره فولادى (200 - 600) برابر است با A=0.3m²

$$
\begin{array}{r}
A=0.45 \mathrm{~m}^{2} \\
\text {. بار حرارتى په ها : با }
\end{array}
$$

بار حرارتى در پره هاى رادياتورها به مقدار كرمايى كفته مى شود كه در شرايط داذل توسط رادياتور توليد ميكردد. به طور نمونه هريره فولادى مدل 200-600 تقريبا"حرارتى برابر با يا $520 \frac{\text { Btu }}{\mathrm{hr}}$ هر یره آلومينيومى مدل 95 - $113 \mathrm{Kcal} / \mathrm{hr}$ يا 500 تقريبا" برابر با

$$
452 \frac{B t u}{\mathrm{hr}}
$$

تعيين تعداد پره هاى رادياتور:

تعداد پره ها رادياتور با فرمول زير قابل محاسبه خواهد بود:
Q = بار حرارتى يك پره (آلومينيومى ، فولادى)
n = تعداد پره ها
بار حرارتى ساختمان = Qtotal

$$
\mathbf{n}=\frac{\mathbf{Q t o t a l}}{\mathbf{Q}}
$$

اكر عدد بدست آمده (n) اعشارى يا فرد بود بزرگترين عدد زوج بعد از عدد محاسبه شده را انتخاب
مى نمائيد.

چنانچه تعداد پره هاى رادياتور بيش از 30 پره باشد چون ممكن است آب گرم در طول رادياتور به خوبى چرخش ننمايد لذا پیشنهاد ميگردد ازدو رادياتور با تعداد پره كمتر استفاده شود.اكرمجبور به انتخاب 28 پره به بالا بوديم بهتر است محل ورودى و خروجى رادر دو طرف رادياتور اجراءء نمائيم.

محاسبات تجربى جهت برآورد بار گرمايى و تعداد پره رادياتور

450 - 500Btu/hr معمولا" در تهران براى كرمايش فضاى اطاقيا به ازاء هرمترمربع تا ارتفاع ّ متر بار كرمايى تخمين زده مى شود براى اطمينان از انجام محاسبات تئورى ميتوانيم به فرمول زير مراجعه نمائيم :

$$
\text { مقدار حرارت به ازاءٍ هر متر مربع }=\text { مساحت كل ساختمان ير تعه هاى ساختمان }
$$

در صورتيكه عدد بدست آمده با اعداد تجربى محاسبات تئورى يك بار ديگر بررسى كردد.

براى ديواره هايى كه داراى عايق بندى مناسبى باشند اعداد درنظركرفته شده براى يك متر مربع(1m²) را تا 30\% ميتوان كاهش داد.

> انتخاب محل نصب رادياتورها

چون معمولا سردترين مكان در اتاق نزديك پنجره است و به علاوه از طريق درزهاى آن، امكان نفوذ هوا به داخل اتاق وجود دارد ، جايتاه و اندازه رادياتورها با توجه به موقعيت پنجره مشخص مى شود . از اين رو بهترين توزيع دما در اتاق و بهترين جبران براى كسرى تابش وقتى رخ مى دهد كه رادياتور زير پنجره نصب شود.اكررادياتور كه حدود \%٪ 9 كرما را به صورت جابجايى منتقل مى كند به صورت آزادجلوى ديوار بيرونى زيرينجره نصب شود، نيروى شناورى هواى گرم آن به قدرى بزرگ خواهد بودكه امكان نفوذ هواى سرد شده ی روى وجه داخلى پنجره وهواى سرد وارد شده از درزهاى پنجره، به درون اتاق را منتفى مى سازد، با اينكار جريان هوا در اتاق(گَردش هواى اتاق)برقرار خواهد شد.هر گاه رادياتور زير پنجره نصب شود طول آن بايد معادل چهناى چنجره انتخاب شود.با اين كار جريان عمودى هوا متعادل مى شود و كرماى رادياتور به
اطراف بيشتر مى شود .

از طرفى هرچه سطح تابشى رادياتور افزايش يابد يا بهتر بكوييم سهم گرماى تابشى رادياتور افزايش يابد تاثير بيشترى در ايجاد آسايش گرمايى خواهد داشت . زيرا گرمايى كه ازطريق تابش از بدن انسان به بيرون منتقل مى شود با افزايش سطح تابش رادياتور بهتر جبران مى شود. براى استفاده از حداكثر ميزان حرارت دهى گرمايى رادياتور بايد آن را نزديك به ديوار و زير پنجره نصب كرد .

نكته : حداقل فاصله رادياتور از جداره هاى ساختمان از ديوار حداقل •0 ميلى متر و از كف اتاق حداقل . . . ميلى متر بايد باشد .

نمونه هاى رادياتور يوتان

معرفى اتصالات رادياتور

I. شير رادياتور:

براى قطع جريان ويا كنترل مقدارجريان آب در رادياتور،سر راه ورود Tب ترم به رادياتور شير مخصوصى به نام شير رادياتورنصب ميكردد.شير رادياتورمعمولا" (دوبل ركلاز)است،به اين معنى كه داخل شير نيز يك قسمت تنظيم شونده وجود داردكه به وسيله ى آن مى توان مقطع عبور آب را تنظيم نمود.شير رادياتور در حقيقت يك نوع شير بشقابى زاويه ای است. يك طرف شير حالت مهره ى ماسوره ای داردكه به رادياتور متصل ميگَرددوطرف ديگر آن كه ازداخل به صورت دنده است به لوله ى ورودى آب گرم وصل مى شود.در شكل ذيل يك شير رادياتور نشان داد ه شده است .

r. شير ترموستاتيك :

براى كنترل خودكاردرجه حرارت محلى كه درآن رادياتورنصب شده است به جاى استفاده از شيردستى رادياتور، ميتوان ازشيرخودكارحرارتى رادياتور(شير ترموستاتيكى رادياتور)استفاده كرد . اين شيرداراى يك قطعه ى آكاردئونى فلزى شكل (فانوسه) است كه با يك نوع كازیرشده است . مجراى بالا رفتن درجه ى حرارت محلى ،اين كاز منبسط شده ،مجراى عبور آب را تنك مى كند؛ در نتيجه مقدار دبى آبكرم ورودى به رادياتور كاهش يافته ،قدرت حرارتى رادياتور و درجه ى حرارت هواى محل كم مى شود ودراثر سرد شدن هواى محل ،فشار كاز كم تر شده ،قطعه ى آكاردئونى جمع مى شود و مجراى عبور آب بازتر ميكردد. در نتيجه مقدار دبى آبكرم ورودى به رادياتور بيش تر شده، قدرت حرارتى راديا تور و درجه ى حرارت هواى محل افزايش مى يابد.

در شكل ذيل يك شيرترموستاتيكى و طريقه ى اتصال آن به رادياتور نشان داده شده است :

بك شير ترموستاتيكى و طريقهى نصب آن بر روى رادياتور
درشيرترموستاتيكى چون كه قسمت فانوسه برروى شير نيز برروى لوله ى رفت آبكرم و رادياتور نصب شده است ،هم گرماى حاصل از هدايت و هم كَرماى هواى خروجى از رادياتور بر آن اثر مى كند و از هواى محل كمتر تاثير مى چذيرد ؛براى رفع اين اشكال و كنترل ببتر هوا ى محل ،مى توان از شيرهاى ترموستاتيكى مخصوص كه فانوسه آن ها جدا از شير است استفاده كرد ـ فانوسه را بايد در محل مناسبى بر روى ديوار نصب كر د ،در اين حالت ارتباط فانوسه با شير به وسيله ى يك لوله مويى است . شيرهاى ترموستاتيكى نيز به

وسيله ى دست، قابل باز وبسته شدن هستند .
س. زانو قفلى رادياتور:
بر روى لوله ى بر گشت رادياتور ،زانوى مخصوص به نام (زانو قفلى)نصب ميكردد. يك طرف اين زانو مانند شير رادياتورحالت مهره ماسوره دارد كه بر روى رادياتور نصب مى شود و طرف ديكر آن كه از داخل به صورت دنده است بر روى لوله نصب ميكردد.ساختمان زانو قفلى مانند شير است و تغاوتى كه قسمت عمل كننده ی آن كه درزيردریوش زانو قرارگرفته بطور معمول ،به وسيله ى آهار »آلن « باز و بسته مى شود . بايدتوجه داشت كه هنگام جداسازى رادياتوراز شبكه ى لوله كشى هم شير رادياتور(لوله رفت) و هم زانو قفلى (لوله بر كشت) را بايد بست و سپس اقدام به باز كردن مهره ماسوره ها و رادياتور نمود. تا چند سال پيش ،زانوهاى رادياتور فاقد قسمت شير مانند داخلى بود به همين علت امكان جداسازى يك رادياتور از شبكه، درحالى كه بقيه رادياتور ها درحال كاربودند ،وجود نداشت .

براى تخليه ى هواى داخل شبكه ى لوله كشى ورادياتورها ،در زمان آب اندازى و نيز خارج نمودن حبابهايى(كه دراثركرم شدن آب در مبدل از آن جدا شده ،همراه جريان Tب كرم از طريق شبكه ى لوله كشى به داخل رادياتورهدايت ميشود)دربالاى رادياتوريك شير مخصوص به نامپشير هواكيرى «نصب مى منند.شيرهاى هواكيرى رادياتور در دو نوع :دستى و خودكار به بازار عرضه مى شوند .

بِك نير هوأيرى دسن راديانور با أجار أن
ه. شيرهوا گير خودكار

در ساختمان نوع خودكار شيرهاى هواگيرى ،از شناورى متصل به يك سوزن استفاده شده است؛ در صورت وجودهوا درمحفظه ى شير ،شناور و سوزن متصل به آن پايين آمده ،مجراى خروج هوا باز مى شودبا خارج شدن هوا و ورود Tب به محفظه، شناور بالا آمده ،به وسيله ى سوزن ،مجرا بسته مى شود . استفاده از اين شيرها به دليل گرانى ،Tب بندى نشدن و چكه كردن آب از آن ها متداول نمى باشند. درشكل ذيل دونمونه شير هواگيرى خودكار رادياتور نشان داده شده است .

دو نونه تير هو اڭيرى خودكار رادياتور

ترموستات از اجزاءٍ مختلفى نظير سنسور،كلاهك تنظيم، شاخص و فنر تشكيل شده است. سنسورها داراى انواع مايع، كازو واكس (wax) هستندكه هر كدام داراى فناورى خاص خودمىباشندوبا تاثيرپذيرى سنسور از دماى محيط و انبساط ياانقباض مايع و يا كاز درون آن و درنتيجه تاثير بر شير، Tب ورودى به رادياتور را كنترل
مىكنند.

برای اينكه ترموستات بتواند به بهترين نحو ممكن دما را حس نمايد درمحللهايى كه رادياتور در محفظه يا زواياى محدود قرار دارد و يا اينكه اجبارا پوشش روى آن قرار داده شده است از ترموستات با سنسور بيرونى استفاده مىشود. سنسور اين ترموستات مىتواند برحسب نياز تا ^ متر ازرادياتور فاصله داشته باشد. تنظيم ترموستات برروى عددّ و دماى حدود اY درجه سانتيكراد سبب مىشود تا هواى اتاق مطلوب و دلپذير باشد .در بعضى از ترموستاتها علاوه بر امكان تنظيم در حالت حداقل دما (x) امكان قطع كامل جريان
آبكرم (•) نيز موجود مىباشد.

در اماكن عمومى و محيطهاى خاصى كه احتياج به ثابت نكَداشتن دما در يك درجه و يا محدودهاى از درجه حرارت محيط مىباشد، مىتوان از ترموستات با سنسور محدودشونده استفاده كرد. بوسيله اين ترموستات مىتوان دماى محيط رادر حداقل و حداكثر دماى تنظيم شده محدود نمود و امكان تغيير دما توسط افراد غير مسئول ممكن نخواهد بود. همچֶنين مىتوان براى جلو گيرى از سرقت ازقفل مخصوص ترموستات نيز استفاده

